精英家教網 > 高中數學 > 題目詳情
9.若直線2x+my=2m-4與直線mx+2y=m-2平行,則m的值為( 。
A.m=-2B.m=±2C.m=0D.m=2

分析 由斜率相等可得m的方程,解之可得m的值,驗證排除直線重合的情形即可.

解答 解:由題意可得兩直線的斜率分別為:-$\frac{2}{m}$,-$\frac{m}{2}$,
由于兩直線平行,故-$\frac{2}{m}$=-$\frac{m}{2}$,
解之可得m=2,或m=-2,
驗證可得當m=2時,直線的方程均可化為x+y+1=0,直線重合,
故可得m=-2,
故選:A.

點評 本題考查直線方程的一般式和直線的平行關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周長的最小值..

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.下列命題中,
①若p、q為兩個命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若p為:?x∈R,x 2+2x+2≤0,則¬p為:?x∈R,x 2+2x+2>0;
③若橢圓 $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的兩焦點為F 1、F 2,且弦AB過F 1點,則△ABF 2的周長為16.
正確命題的序號是②.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知圓C:(x-1)2+(y-2)2=4的周長,則點P(3,3)與圓C上的動點M的距離的最大值為( 。
A.$\sqrt{5}$B.$\sqrt{5}-2$C.$\sqrt{5}+2$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.某地實行階梯電價,以日歷年(每年1月1日至12月31日)為周期執(zhí)行居民階梯電價,即:一戶居民用戶全年不超過2880度(1度=千瓦時)的電量,執(zhí)行第一檔電價標準,每度電0.4883元;全年超過2880度至4800度之間的電量,執(zhí)行第二檔電價標準,每度電0.5383元;全年超過4800度以上的電量,執(zhí)行第三檔電價標準,每度電0.7883元.下面是關于階梯電價的圖形表示,其中正確的有(參考數據:0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)( 。
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知橢圓E:$\frac{x^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點為F1,F(xiàn)2,上頂點為P,圓C:(x-2a)2+(y-b)2=4恰好與直線PF1相切.
(1)求圓C的方程;
(2)過橢圓的上頂點是否存在一條直線L與圓C交于A,B兩點,且$\overrightarrow{CA}•\overrightarrow{CB}=\frac{92}{5}$,若存在,求出直線L的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若復數z滿足z2+2z=-10,則|z|=( 。
A.$\sqrt{7}$B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.在△ABC中,a=1,B=45°,△ABC的面積S=2,則△ABC的外接圓的直徑為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.函數$f(x)=cosx({-\frac{π}{6}≤x≤\frac{2π}{3}})$的值域是[$-\frac{1}{2}$,1].

查看答案和解析>>

同步練習冊答案