18.在△ABC中,a=1,B=45°,△ABC的面積S=2,則△ABC的外接圓的直徑為5$\sqrt{2}$.

分析 先根據(jù)三角形面積公式求得c邊的長,進而利用余弦定理求得b,最后根據(jù)正弦定理利用$\frac{sinB}$,求得三角形外接圓的直徑.

解答 解:在△ABC中,∵S=$\frac{1}{2}$acsinB=2,
∴$\frac{1}{2}$×1×c×sin45°=2,
∴c=4$\sqrt{2}$
∴b2=a2+c2-2accosB=1+32-2×1×4$\sqrt{2}$×cos45°,
∴b2=25,b=5.
∴△ABC的外接圓的直徑等于$\frac{sinB}$=5$\sqrt{2}$
故答案為:5$\sqrt{2}$.

點評 本題主要考查了正弦定理和余弦定理的應用.作為正弦定理和余弦定理的變形公式也應熟練掌握,以便做題時方便使用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=x2-alnx(常數(shù)a>0).
(1)當a=3時,求曲線y=f(x)在點(1,f(1)處的切線方程;
(2)討論函數(shù)f(x)在區(qū)間(1,ea)上零點的個數(shù)(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若直線2x+my=2m-4與直線mx+2y=m-2平行,則m的值為( 。
A.m=-2B.m=±2C.m=0D.m=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(Ⅰ)計算lg8+3lg5;
(Ⅱ)計算(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={x|x2-6x+5≤0},$B=\{x|y=\sqrt{x-3}\}$,A∩B=( 。
A.[1,3]B.[1,5]C.[3,5]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線$y=\frac{1}{3}{x^3}+\frac{4}{3}$,求曲線在點(2,4)處的切線與坐標軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知點A(0,1),B(-2,3),C(-1,2),D(1,5),則向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影為$-\frac{\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.化簡:
(1)$\frac{-sin(180°+α)+sin(-α)-tan(360°+α)}{tan(α+180°)+cos(-α)+cos(180°-α)}$
(2)$\frac{{cos({α-\frac{π}{2}})}}{{sin({\frac{5π}{2}+α})}}•sin({π-α})•cos({2π+α})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某人經(jīng)營一個抽獎游戲,顧客花費3元錢可購買一次游戲機會,每次游戲中,顧客從標有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機抽取2張,并根據(jù)摸出的卡片的情況進行兌獎,經(jīng)營者將顧客抽到的卡片情況分成以下類別:
A:同花順,即卡片顏色相同且號碼相鄰;
B:同花,即卡片顏色相同,但號碼不相鄰;
C:順子,即卡片號碼相鄰,但顏色不同;
D:對子,即兩張卡片號碼相同;
E:其他,即A,B,C,D以外的所有可能情況,
若經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應顧客中一等獎,最容易發(fā)生的一種類別對應顧客中二等獎,其他類別對應顧客中三等獎.
(1)一、二等獎分別對應哪一種類別?(寫出字母即可)
(2)若經(jīng)營者規(guī)定:中一、二、三等獎,分別可獲得價值9元、3元、1元的獎品,假設某天參與游戲的顧客為300人次,試估計經(jīng)營者這一天的盈利.

查看答案和解析>>

同步練習冊答案