分析 (1)由三角恒等變換化簡f(x),由此得到遞增區(qū)間.
(2)由等式得到$cosB=\frac{{\sqrt{3}}}{2}$,利用余弦定理及三角形面積公式即可.
解答 解:(Ⅰ)由題意可知,$f(x)=\frac{1}{2}sin2x-\frac{{1+cos({2x+\frac{π}{2}})}}{2}$=$\frac{1}{2}sin2x-\frac{1-sin2x}{2}$=$sin2x-\frac{1}{2}$,
由$2kπ-\frac{π}{2}≤2x≤2kπ+\frac{π}{2},\;\;k∈Z$,
可解得:$kπ-\frac{π}{4}≤x≤kπ+\frac{π}{4},\;\;k∈Z$.
又因為x∈(0,π),
所以f(x)的單調(diào)遞增區(qū)間是$({0,\;\;\frac{π}{4}}]$和$[{\frac{3π}{4},\;\;π})$.
(Ⅱ)由$f({\frac{B}{2}})=sinB-\frac{1}{2}=0$,可得$sinB=\frac{1}{2}$,
由題意知B為銳角,所以$cosB=\frac{{\sqrt{3}}}{2}$,
由余弦定理b2=a2+c2-2accosB,
可得:$1+\sqrt{3}ac={a^2}+{c^2}≥2ac$,即$ac≤2+\sqrt{3}$,且當a=c時等號成立,
因此${S_{△ABC}}=\frac{1}{2}acsinB≤\frac{{2+\sqrt{3}}}{4}$,
所以△ABC面積的最大值為$\frac{{2+\sqrt{3}}}{4}$.
點評 本題考查三角恒等變換,余弦定理及三角形面積公式.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5$\sqrt{2}$-7 | B. | 5$\sqrt{2}$-2 | C. | 5$\sqrt{2}$-1 | D. | 5$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com