12.函數(shù)y=(x+1)2的零點是( 。
A.0B.-1C.(0,0)D.(-1,0)

分析 直接令y=0,求解x的值即可,

解答 解:令y=0,
∴(x+1)2=0
∴x=-1,
∴-1是函數(shù)的零點,
故選:B.

點評 本題重點考查函數(shù)零點的概念和求解,注意區(qū)分零點和交點的區(qū)別,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列四個命題,其中不正確的命題為( 。
①若cos α=cos β,則α-β=2kπ,k∈Z;
②函數(shù)y=2cos$\frac{x}{3}$的圖象關于x=$\frac{π}{12}$對稱;
③函數(shù)y=cos(sin x)(x∈R)為偶函數(shù);
④函數(shù)y=sin|x|是周期函數(shù),且周期為2π.
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(1,$\frac{{\sqrt{6}}}{3}$),離心率為$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)若動直線l(不經(jīng)過橢圓上頂點A)與橢圓C相交于P,Q兩點,且$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若集合A={1,2,3,4},B={x|y=log2(3-x)},則A∩B=( 。
A.{1,2}B.{1,2,3}C.{1,2,3,4}D.{4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復數(shù)z滿足(1+i)z=2-i,則在復平面內(nèi),z的共軛復數(shù)的實部與虛部的積為( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{3}{4}i$D.$-\frac{3}{4}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.數(shù)y=log${\;}_{\frac{1}{2}}}$(x2-6x+11)的單調遞增區(qū)間為(-∞,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=lnx+\frac{1}{2}a{x^2}-({a+1})x({a∈R})$.
(I)a=1時,求函數(shù)y=f(x)的零點個數(shù);
(Ⅱ)當a>0時,若函數(shù)y=f(x)在區(qū)間[1,e]上的最小值為-2,求a的值;
(Ⅲ)若關于x的方程$f(x)=\frac{1}{2}a{x^2}$有兩個不同實根x1,x2,求實數(shù)a的取值范圍并證明:${x_1}•{x_2}>{e^2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)=(x2-2ax)ebx,x為自變量.
(1)函數(shù)f(x)分別在x=-1和x=1處取得極小值和極大值,求a,b.
(2)若a≥0且b=1,f(x)在[-1,1]上是單調函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案