5.已知函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2-x)=f(2+x),求f(x)的解析式;
(2)已知x1,x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2-x1=2,當(dāng)x∈(x1,x2)時(shí),g(x)=-f(x)+2(x2-x)的最大值為h(a),當(dāng)a≥2時(shí),求h(a)的最小值.

分析 (1)由f(2-x)=f(2+x)得函數(shù)的對(duì)稱軸為x=2,結(jié)合一元二次函數(shù)的對(duì)稱性進(jìn)行求解即可,求f(x);
(2)求出g(x)=a(x2-x)(x-x1+$\frac{2}{a}$),根據(jù)基本不等式求出g(x)≤a+$\frac{1}{a}$+2,利用函數(shù)的單調(diào)性求出答案.

解答 解:(1)由f(2-x)=f(2+x),得函數(shù)f(x)關(guān)于x=2對(duì)稱,則-$\frac{b-1}{2a}$=2,
又a+b-1+1=0,
解得a=$\frac{1}{3}$,b=-$\frac{1}{3}$,
∴f(x)=$\frac{1}{3}$x2-$\frac{4}{3}$x+1;
(2)設(shè)f(x)=a(x-x1)(x-x2),
g(x)=-a(x-x1)(x-x2)+2(x2-x)=-a(x-x2)(x-x1+$\frac{2}{a}$)=a(x2-x)(x-x1+$\frac{2}{a}$);
∵x∈(x1,x2),a≥2;
∴x2-x>0,x-x1+$\frac{2}{a}$>0;
∵$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$-x2═$\frac{{x}_{1}-{x}_{2}}{2}$-$\frac{1}{a}$=$\frac{-2}{2}$-$\frac{1}{a}$=1-$\frac{1}{a}$<0,
∴$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$<x2
$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$-x2=$\frac{{x}_{1}-{x}_{2}}{2}$-$\frac{1}{a}$=1-$\frac{1}{a}$>1-$\frac{1}{2}$=$\frac{1}{2}$>0,
∴$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$>x1,
∴x=$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$∈(x1,x2).
∴g(x)≤a•($\frac{{x}_{2}-{x}_{1}+\frac{2}{a}}{2}$)2=a+$\frac{1}{a}$+2,
當(dāng)x=$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{a}$=$\frac{-b-1}{2a}$時(shí)取“=”;
∴h(a)=a+$\frac{1}{a}$+2,a≥2;
a≥2時(shí),h′(x)=1-$\frac{1}{{a}^{2}}$>0;
∴h(a)在[2,+∞)上單調(diào)遞增;
∴h(2)=$\frac{9}{2}$是h(a)的最小值.

點(diǎn)評(píng) 本題主要考查一元二次函數(shù)的性質(zhì),考查學(xué)生的運(yùn)算能力,綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若關(guān)于x、y的線性方程組$(\begin{array}{l}{m}&{1}\\{1}&{m}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{{m}^{2}}\\{m}\end{array})$有無(wú)窮多組解,則實(shí)數(shù)m的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知sinx=$\frac{3}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx,tanx的值;
(2)求$\frac{sin(-x)}{{cos(\frac{π}{2}-x)+cos(2π-x)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.曲線xy=1的一個(gè)參數(shù)方程是( 。
A.$\left\{\begin{array}{l}x={t^{\frac{1}{2}}}\\ y={t^{-\frac{1}{2}}}\end{array}\right.$B.$\left\{\begin{array}{l}x={2^t}\\ y={2^{-t}}\end{array}\right.$
C.$\left\{\begin{array}{l}x=log_2t\\ y=log_t2\end{array}\right.$D.$\left\{\begin{array}{l}x=sinα\\ y=\frac{1}{sinα}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)f(x)=$\frac{1}{{{4^x}+2}}$,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和公式的方法,可求得f($\frac{1}{10}$)+f($\frac{2}{10}$)+…+f($\frac{9}{10}$)=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖的程序框圖輸出的結(jié)果是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線y=2x的參數(shù)方程是( 。
A.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=2\sqrt{t}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=2t+1}\\{y=4t+1}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=tanθ}\\{y=2tanθ}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)=x2cosθ-x(1-x)+(1-x)2sinθ在x∈[0,1]時(shí),f(x)>0恒成立.
(1)求證:sinθ>0,cosθ>0;          
(2)求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100]
(1)求頻率分布直方圖中a的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評(píng)分恰好有一人在[40,50)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案