解答:
解:(1)由已知f(0)=1,f'(x)=e
x,f'(0)=1,
g(0)=c,g'(x)=2ax+b,g'(0)=b,
依題意可得
,解得
;
(2)a=c=1,b=0時(shí),g(x)=x
2+1,f(x)=e
x,
①x=0時(shí),f(0)=1,g(0)=1,即f(x)=g(x);
②x<0時(shí),f(x)<1,g(x)>1,即f(x)<g(x);
③x>0時(shí),令h(x)=f(x)-g(x)=e
x-x
2-1,則h'(x)=e
x-2x.
設(shè)k(x)=h'(x)=e
x-2x,則k'(x)=e
x-2,
當(dāng)x<ln2時(shí),k'(x)<0,k(x)在區(qū)間(-∞,ln2)單調(diào)遞減;
當(dāng)x>ln2時(shí),k'(x)>0,k(x)在區(qū)間(ln2,+∞)單調(diào)遞增.
所以當(dāng)x=ln2時(shí),k(x)取得極小值,且極小值為k(ln2)=e
ln2-2ln2=2-ln4>0
即k(x)=h'(x)=e
x-2x>0恒成立,故h(x)在R上單調(diào)遞增,
又h(0)=0,因此,當(dāng)x>0時(shí),h(x)>h(0)=0,即f(x)>g(x).
綜上,當(dāng)x<0時(shí),f(x)<g(x);
當(dāng)x=0時(shí),f(x)=g(x);
當(dāng)x>0時(shí),f(x)>g(x).