6.設函數(shù)f(x)滿足f(x)=2f($\frac{1}{x}$)•x-1,則f(4)的值是( 。
A.3B.-3C.-1D.1

分析 因為括號里一個是x,一個是$\frac{1}{x}$,互為倒數(shù) 又求的是f(4),所以想到分別把x用4跟$\frac{1}{4}$替換,聯(lián)立兩式能求出f(4).

解答 解:∵函數(shù)f(x)滿足f(x)=2f($\frac{1}{x}$)•x-1,
∴$\left\{\begin{array}{l}{f(4)=2f(\frac{1}{4})×4-1}\\{f(\frac{1}{4})=2f(4)×\frac{1}{4}-1}\end{array}\right.$,
解得f(4)=3,f($\frac{1}{4}$)=$\frac{1}{2}$.
故選:A.

點評 本題考查函數(shù)值的求法,是中檔題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.f(x)=x2+x+1,則f(f(2))=57.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.若角α的終邊落在直線y=-3x上,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)(理)求二面角B1-CE-C1的正弦值.
(文)求異面直線CE與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖:已知空間四邊形ABCD中,AB=BC=CD=DA=a,對角線AC=$\frac{{\sqrt{6}}}{2}a$,BD=$\sqrt{2}a$,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.一個等差數(shù)列{an}的前n項和為12,前2n項和為24,則前3n項和為( 。
A.36B.48C.38D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)=$\frac{1}{x}$,則$\underset{lim}{△x→0}$$\frac{f(x-2△x)-f(x)}{△x}$的值是( 。
A.$\frac{2}{x^2}$B.2xC.-2xD.-$\frac{2}{x^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)y=f(x)是奇函數(shù),且當x>0時,f(x)=2x+1,則f(-2)=( 。
A.-3B.3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.函數(shù)f(x)=ax2+bx+c,已知方程f(x)=x無實數(shù)解.
求證:f(f(x))=x也沒有實數(shù)解.

查看答案和解析>>

同步練習冊答案