13.在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L-距離”定義為|P1P2|=|x1-x2|+|y1-y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤$\sqrt{3}$.求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.

分析 設(shè)邊AB所在直線的傾斜角為θ,則$θ∈[{0,\frac{π}{3}}]$,利用L-距離的定義,表示|BC|,結(jié)合輔助角公式,求出取最大值時(shí),邊AB所在直線的斜率的值.

解答 解:設(shè)邊AB所在直線的傾斜角為θ,則$θ∈[{0,\frac{π}{3}}]$
∴$B(cosθ,sinθ),C(cos(θ+\frac{π}{3}),sin(θ+\frac{π}{3}))$…(2分)
∴|BC|=|cosθ-cos(θ+$\frac{π}{3}$)|+|sinθ-sin(θ+$\frac{π}{3}$)|
=$|{\frac{1}{2}cosθ+\frac{{\sqrt{3}}}{2}sinθ}|+|{\frac{1}{2}sinθ-\frac{{\sqrt{3}}}{2}cosθ}|$
=$|{sin(θ+\frac{π}{6})}|+|{cos(θ+\frac{π}{6})}|$…(6分)
∵$θ∈[{0,\frac{π}{3}}]∴θ+\frac{π}{6}∈[{\frac{π}{6},\frac{π}{2}}]$,
∴|BC|=$|{sin(θ+\frac{π}{6})}|+|{cos(θ+\frac{π}{6})}|$=$\sqrt{2}$sin(θ+$\frac{5π}{12}$)…(8分)
∵$θ∈[{0,\frac{π}{3}}]∴θ+\frac{5π}{12}∈[{\frac{5π}{12},\frac{3π}{4}}]$,
∴當(dāng)θ+$\frac{5π}{12}$=$\frac{π}{2}$時(shí),即θ=$\frac{π}{12}$時(shí),|BC|取得最大值$\sqrt{2}$,…(10分)
此時(shí)$k=tanθ=tan\frac{π}{12}$,∵$tan\frac{π}{6}=\frac{{2tan\frac{π}{12}}}{{1-{{tan}^2}\frac{π}{12}}}$(或由$tan\frac{π}{12}=tan(\frac{π}{4}-\frac{π}{6})$求k)∴$\frac{{\sqrt{3}}}{3}=\frac{2k}{{1-{k^2}}},解得k=2-\sqrt{3}或k=-2-\sqrt{3}(舍去)$,
∴$k=2-\sqrt{3}$.…(12分)

點(diǎn)評(píng) 本題考查新定義,考查直線斜率的計(jì)算,考查三角函數(shù)知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)?x∈[-$\sqrt{3}$,$\frac{3}{2}+2\sqrt{3}$]恒成立,則a的取值范圍是( 。
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了對(duì)某研究性課題進(jìn)行研究,用分層抽樣的方法從某校高中各年級(jí)中抽取若干名學(xué)生組成研究小組,數(shù)據(jù)見(jiàn)表:
 年級(jí) 相關(guān)人數(shù)抽取人數(shù) 
 高一 36 x
 高二 54 3
 高三 18 y
(Ⅰ)求表中x,y的值;
(Ⅱ)若從高二、高三抽取的人中任選2人作專題發(fā)言,求這2人都來(lái)自高二的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中的真命題是( 。
A.三角形的內(nèi)角必是第一象限或第二象限的角
B.鈍角是第二象限的角
C.終邊相同的角必相等
D.第一象限的角是正角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)G在AD上,且是△ABC的重心,則用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{BG}$為( 。
A.$\overrightarrow{BG}=-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\overrightarrow{BG}=-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\overrightarrow{BG}=\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}$D.$\overrightarrow{BG}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)隨機(jī)變量ξ~N(0,1),P(ξ>1)=0.2,則P(-1<ξ<1)=( 。
A.0.1B.0.3C.0.6D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|y=$\sqrt{x-1}$},B={x|-1≤2x-1≤3},則A∩B=( 。
A.[0,1]B.[1,2]C.[1,$\frac{3}{2}$]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某中學(xué)舉辦電腦知識(shí)競(jìng)賽,滿分為100分,80分以上為優(yōu)秀(含80分),現(xiàn)將高一兩個(gè)班參賽學(xué)生的成績(jī)進(jìn)行整理后分成5組;第一組[50,60),第二組[60,70),第三組[70,80),第四組[80,90),第五組[90,100],其中第一、三、四、五小組的頻率分別為0.30、0.15、0.10、0.05,而第二小組的頻數(shù)是40,則參賽的人數(shù)以及成績(jī)優(yōu)秀的概率分別是( 。
A.50,0.15B.50,0.75C.100,0.15D.100,0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.我國(guó)南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分?jǐn)?shù)來(lái)表示數(shù)值的算法,其理論依據(jù)是:設(shè)實(shí)數(shù)x的不足近似值和過(guò)剩近似值分別為$\frac{a}$和$\frac3w994vv{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過(guò)剩近似值.我們知道π=3.14159…,若令$\frac{31}{10}$<π<$\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過(guò)剩近似值,即$\frac{31}{10}$<π<$\frac{16}{5}$,若每次都取最簡(jiǎn)分?jǐn)?shù),那么第四次用“調(diào)日法”后可得π的近似分?jǐn)?shù)為( 。
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

同步練習(xí)冊(cè)答案