18.在同一個坐標系內(nèi),畫出下列拋物線:
(1)y2=$\frac{1}{2}$x;
(2)y2=x;
(3)y2=2x;
(4)y2=4x.

分析 利用描點畫圖即可.

解答 解:(1)y2=$\frac{1}{2}$x;(2)y2=x;(3)y2=2x;(4)y2=4x.圖象如圖所示:

點評 本題考查了拋物線的畫法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知角α是第四象限角,且角的終邊在直線y=-2x上,求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t+1\end{array}\right.$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為$ρ=2\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)設點P的極坐標為$(4,\frac{π}{3})$,求點P到直線l的距離;
(2)直線l與曲線C交于A,B兩點,求AB的中點到點M(0,1)的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=2sin2x的圖象向右平移φ(0<φ<π)個單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)-g(x2)|=4的x1、x2,有|x1-x2|的最小值為$\frac{π}{6}$,則φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設${z_1},{z_2}∈C,z_1^2-2{z_1}{z_2}+4z_2^2=0,|{z_2}|=2$,那么以|z1|為直徑的圓的面積為(  )
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知∠BAC=$\frac{π}{3}$,正△PMN的頂點M、N分別在射線AB、AC上運動,P在∠BAC的內(nèi)部,MN=2,M、P、N按逆時針方向排列,設∠AMN=θ.
(1)求AM(用θ表示);
(2)當θ為何值時PA最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.α為實數(shù),則“α=2kπ+$\frac{π}{4}$(k∈Z)”是“tanα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+1|-2|x-1|.
(1)求不等式f(x)≥1的解集;
(2)求函數(shù)f(x)的圖象與x軸圍成的三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知拋物線y2=4$\sqrt{2}$x的準線恰好是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{4}$=1的左準線,則雙曲線的漸近線方程為y=±x.

查看答案和解析>>

同步練習冊答案