5.a(chǎn),b∈R,復(fù)數(shù)(a2-4a+6)+(-b2+2b-4)i表示的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用配方法分別判斷實(shí)部和虛部的符號(hào)得答案.

解答 解:∵a2-4a+6=(a-2)2+2>0,-b2+2b-4=-(b2-2b+4)=-[(b-1)2+3]<0,
∴復(fù)數(shù)(a2-4a+6)+(-b2+2b-4)i表示的點(diǎn)位于第四象限.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了利用配方法判斷代數(shù)式的符號(hào),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知二項(xiàng)式($\sqrt{x}$-$\frac{2}{x}$)n的展開式中的第5項(xiàng)為常數(shù),求展開式中x$\sqrt{x}$項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{ax+1}$在(-∞,1]上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1的一個(gè)面A1B1C1D1在半徑為$\sqrt{3}$的半球底面上,A、B、C、D四個(gè)頂點(diǎn)都在此半球面上,則正方體ABCD-A1B1C1D1的體積為( 。
A.$2\sqrt{2}$B.$3\sqrt{3}$C.2$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.2014是等差數(shù)列4,7,10,13,…的第幾項(xiàng)( 。
A.669B.670C.671D.672

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知?a,b,c∈R,且a>b,則下列不等式恒成立的是( 。
A.(a+c)4>(b+c)4B.(a-b)c2>0C.a+c≥b-cD.${(a+c)^{\frac{1}{3}}}>{(b+c)^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.要安排3名男生、2名女生和1名教師站成一排,且要求所有男生不相鄰,女生也不相鄰的排法種數(shù)是( 。
A.72B.120C.144D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)a∈R,函數(shù)f(x)=ax2+bx-a(|x|≤1).
(1)若|f(0)|≤1,|f(1)|≤1,求證:|f(x)|≤$\frac{5}{4}$;
(2)當(dāng)b=1,若f(x)的最大值為$\frac{17}{8}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l過(guò)點(diǎn)P(1,2).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若直線l與x軸和y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OAB面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案