15.定義max{a,b}=$\left\{{\begin{array}{l}{a,a>b}\\{b,a≤b}\end{array}}$,對(duì)于函數(shù)f(x)=max{log2x,-x+3},則f(x)的最小值為1.

分析 本題在于理解新函數(shù)定義max{a,b},根據(jù)定義畫成函數(shù)圖形即可.

解答 解:由定義max{a,b}=$\left\{{\begin{array}{l}{a,a>b}\\{b,a≤b}\end{array}}$ 可知,
f(x)=max{log2x,-x+3}的圖形如右圖紅色粗實(shí)線部分.
∴f(x)在y=log2x 與 y=-x+3交點(diǎn)處取得函數(shù)最小值
∴l(xiāng)og2x=-x+3⇒x=2
∴f(2)=-2+3=1.
故答案為:1

點(diǎn)評(píng) 本題主要考查考生對(duì)新函數(shù)定義的理解與應(yīng)用,屬創(chuàng)新類型題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正項(xiàng)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,點(diǎn)$P({a_n},a_{n+1}^2)$在曲線y=x2+4x+4上.
(1)求an和Sn;
(2)若數(shù)列{bn}滿足b1=17,bn+1-bn=2n,求使得$\frac{b_n}{{\sqrt{S_n}}}$最小的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}-1\;,\;x≤0}\\{-{x^2}+x\;,\;x>0}\end{array}}$,則函數(shù)g(x)=f(logax)(其中0<a<1)的單調(diào)遞減區(qū)間是( 。
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.[$\sqrt{a}$,1)D.(0,$\sqrt{a}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.化簡(jiǎn)下列各式:
(Ⅰ)$\overrightarrow{MB}$+$\overrightarrow{AC}$+$\overrightarrow{CM}$;
(Ⅱ)$\overrightarrow{OP}$-$\overrightarrow{QP}$+$\overrightarrow{PS}$+$\overrightarrow{SP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.市場(chǎng)上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠產(chǎn)品占30%,甲廠產(chǎn)品的合格率是95%,乙廠產(chǎn)品的合格率是80%,若用事件A、$\overline{A}$分別表示甲、乙兩廠的產(chǎn)品,用B表示產(chǎn)品為合格品.
(1)試寫出有關(guān)事件的概率;
(2)求從市場(chǎng)上買到一個(gè)燈泡是甲廠生產(chǎn)的合格燈泡的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平面幾何里有射影定理:設(shè)三角形ABC的兩邊AB⊥AC,D是A點(diǎn)在BC上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,AD⊥面ABC,點(diǎn)O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,得出正確的結(jié)論是( 。
A.S△ABC2=S△BCO•S△BCDB.S△ABD2=S△BOD•S△BOC
C.S△ADC2=S△DOC•S△BOCD.S△BDC2=S△ABD•S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=asin3x+bx3+1(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(1)+f(-1)+f'(2)-f'(-2)=(  )
A.2B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|1<x-1<3},B={x|(x-3)(x-a)<0},
(1)當(dāng)a=5時(shí),求A∩B,A∪B.
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知全集U=R,集合A={x|x2-6x+5<0},B=$\left\{{\left.x\right|\frac{x-2}{x-4}>0}\right\}$,C={x|3a-2<x<4a-3}求:
(1)A∩B,∁U(A∪B);
(2)若C⊆A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案