2.如圖,四棱錐O-ABCD中,AC垂直平分BD,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OD}$|=1,則($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)的值是3.

分析 設(shè)AC、BD交于點(diǎn)E,由題意$\overrightarrow{OB}$+$\overrightarrow{OD}$=2$\overrightarrow{OE}$,$\overrightarrow{EA}$•$\overrightarrow{DB}$=$\overrightarrow{EC}$•$\overrightarrow{DB}$,由此即可求出($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)的值.

解答 解:如圖所示,
四棱錐O-ABCD中,設(shè)AC、BD交于點(diǎn)E,
由題意AC⊥BD,DE=BE,
∴$\overrightarrow{OB}$+$\overrightarrow{OD}$=2$\overrightarrow{OE}$,$\overrightarrow{EA}$•$\overrightarrow{DB}$=$\overrightarrow{EC}$•$\overrightarrow{DB}$=0;
又|$\overrightarrow{OB}$|=2,|$\overrightarrow{OD}$|=1,
∴($\overrightarrow{OA}$+$\overrightarrow{OC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)=($\overrightarrow{OE}$+$\overrightarrow{EA}$+$\overrightarrow{OE}$+$\overrightarrow{EC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)
=(2$\overrightarrow{OE}$+$\overrightarrow{EA}$+$\overrightarrow{EC}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)
=2$\overrightarrow{OE}$•($\overrightarrow{OB}$-$\overrightarrow{OD}$)+($\overrightarrow{EA}$+$\overrightarrow{EC}$)•$\overrightarrow{DB}$
=($\overrightarrow{OB}$+$\overrightarrow{OD}$)•($\overrightarrow{OB}$-$\overrightarrow{OD}$)
=${\overrightarrow{OB}}^{2}$-${\overrightarrow{OD}}^{2}$
=22-12
=3.
故答案為:3.

點(diǎn)評 本題考查了平面向量的線性運(yùn)算與數(shù)量積的運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=lg($\frac{2}{1-x}$+a)是奇函數(shù),則使f(x)<0的x的取值范圍是(  )
A.(0,1)B.(-1,0)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)g(x)=2alnx+x2-2x,a∈R.
(1)若函數(shù)g(x)在定義域上為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)A,B是函數(shù)g(x)圖象上的不同的兩點(diǎn),P(x0,y0)為線段AB的中點(diǎn).
(i)當(dāng)a=0時,g(x)在點(diǎn)Q(x0,g(x0))處的切線與直線AB是否平行?說明理由;
(ii)當(dāng)a≠0時,是否存在這樣的A,B,使得g(x)在點(diǎn)Q(x0,g(x0))處的切線與直線AB平行?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知e為自然對數(shù)的底數(shù),曲線y=aex+x在點(diǎn)(1,ae+1)處的切線與直線2ex-y-1=0平行,則實(shí)數(shù)a=( 。
A.$\frac{e-1}{e}$B.$\frac{2e-1}{e}$C.$\frac{e-1}{2e}$D.$\frac{2e-1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax(a∈R).
(1)若a=-2,求曲線y=f(x)在x=1處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某賓館在裝修時,為了美觀,欲將客房的窗戶設(shè)計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計劃將矩形ABCD區(qū)域設(shè)計為可推拉的窗口.
(1)若窗口ABCD為正方形,且面積大于$\frac{1}{4}$m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若A=$\frac{π}{4}$,且a=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(1)若函數(shù)g(x)=$\frac{3x+a}{x+1}$在區(qū)間[3,10]上封閉,求實(shí)數(shù)a的取值范圍;
(3)已知a<b,是否存在a,b,使函數(shù)h(x)=|1-$\frac{1}{x}$|在區(qū)間[a,b]上封閉?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)為偶函數(shù),且f(x)=x2-$\frac{1}{x}$(x>0),則f′(-1)=-3.

查看答案和解析>>

同步練習(xí)冊答案