8.在二項式($\frac{1}{{\sqrt{x}}}$-x24展開式中含x3項的系數(shù)是6.

分析 利用二項式定理的展開式的通項公式即可得出.

解答 解:二項式($\frac{1}{{\sqrt{x}}}$-x24展開式中通項公式為:Tr+1=${∁}_{4}^{r}$$(\frac{1}{\sqrt{x}})^{4-r}$(-x2r=(-1)r${∁}_{4}^{r}$${x}^{\frac{5r}{2}-2}$,
令$\frac{5}{2}$r-2=3,解得r=2.
∴含x3項的系數(shù)是${∁}_{4}^{2}$=6.
故答案為:6.

點評 本題考查了二項式定理的展開式的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了迎接第二屆國際互聯(lián)網(wǎng)大會,組委會對報名參加服務(wù)的1500名志愿者進行互聯(lián)網(wǎng)知識測試,從這1500名志愿者中采用隨機抽樣的方法抽取15人,所得成績?nèi)缦拢?7,63,65,68,72,77,78,78,79,80,83,85,88,90,95.
(Ⅰ)作出抽取的15人的測試成績的莖葉圖,以頻率為概率,估計這1500志愿者中成績不低于90分的人數(shù);
(Ⅱ)從抽取的成績不低于80分的志愿者中,隨機選3名參加某項活動,求選取的3人中恰有一人成績不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如果實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{2x+y-3≤0}\end{array}}\right.$,且(x+a)2+y2的最小值為6,a>0,則a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x||x-2|<3},N為自然數(shù)集,則A∩N中元素的個數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}等差數(shù)列;
(2)數(shù)列bn=an•an+1,求數(shù)列bn的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓C1:x2+y2-4x-2y+1=0與圓C2:x2+y2+2x+6y-39=0的位置關(guān)系是內(nèi)切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.把函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{8}$個單位可得到y(tǒng)=sin2x的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow a$,$\overrightarrow b$滿足(2$\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=6,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知y=f(x+1)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[1,2)時,f(x)=log2x,設(shè)a=f($\frac{1}{2}$),$b=f(\frac{10}{3})$,c=f(1),則a,b,c的大小關(guān)系為( 。
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案