8.在一個口袋中裝有3個白球,4個黑球,3個紅球,一次從中摸出3個球.
(1)求摸出的3個球顏色不全相同的概率;
(2)規(guī)定摸出1個白球、1個黑球、1個紅球分別得1分、2分、3分,設(shè)X為摸出3個球的得分之和,求隨機變量X≥6的概率分布及數(shù)學(xué)期望E(X≥6).

分析 (1)記“摸出的3個球顏色不全相同”為事件的A,利用對立事件概率計算公式能求出摸出的3個球顏色不全相同的概率.
(2)隨機變量X≥6的可能取值為6,7,8,9,分別求出相應(yīng)的概率,由此能求出隨機變量X≥6的概率分布及數(shù)學(xué)期望E(X≥6).

解答 解:(1)記“摸出的3個球顏色不全相同”為事件的A,
則其概率為$P(A)=1-\frac{C_3^3+C_4^3+C_3^3}{{C_{10}^3}}=\frac{19}{20}$.  …(4分)
∴摸出的3個球顏色不全相同的概率為$\frac{19}{20}$.…(5分)
(2)隨機變量X≥6的可能取值為6,7,8,9,
$P(X=6)=\frac{C_4^3+C_3^1C_4^1C_3^1}{{C_{10}^3}}=\frac{1}{3}$,
$P(X=7)=\frac{C_3^1C_3^2+C_4^2C_3^1}{{C_{10}^3}}=\frac{9}{40}$,
$P(X=8)=\frac{C_4^1C_3^2}{{C_{10}^3}}=\frac{1}{10}$,
$P(X=9)=\frac{C_3^3}{{C_{10}^3}}=\frac{1}{120}$. …(12分)
∴隨機變量X的分布列為

X6789
P$\frac{1}{3}$$\frac{9}{40}$$\frac{1}{10}$$\frac{1}{120}$
∴$E(X≥6)=6×\frac{1}{3}+7×\frac{9}{40}+8×\frac{1}{10}+9×\frac{1}{120}=\frac{89}{20}$    …(14分)

點評 本題考查概率的求法,考查離散型隨機變量的分布列的性質(zhì)及分布列的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x(x-2)>0的解集是( 。
A.(-∞,-2)∪(0,+∞)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.現(xiàn)給出(x,y)的5組數(shù)據(jù):(2,1),(3,2),(4,4),(5,4),(6,5),根據(jù)這5組數(shù)據(jù)計算得到y(tǒng)關(guān)于x的線性回歸方程$\widehat{y}$=x+$\widehat{a}$,由此方程可以預(yù)測得到的數(shù)據(jù)可以為(  )
A.(7,6)B.(8,7.5)C.(9,8.6)D.(10,9.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線y2=8x的準線過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點,且雙曲線的兩條漸近線方程為y=±2x,則雙曲線離心率為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.當a<-2時,關(guān)于x的不等式ax2+(a-2)x-2≥0的解為{x|-1≤x≤$\frac{2}{a}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+mx-1,m∈R.
(1)若關(guān)于x的不等式f(x)<0的解集是{x|-2<x<n},求實數(shù)m,n的值;
(2)若對于任意x∈[m,m+1],都有f(x)<0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知關(guān)于x的不等式ax2+5x+c>0的解集為{x|$\frac{1}{3}<x<\frac{1}{2}$}
(1)求a,c的值;
(2)解不關(guān)于x的不等式ax2+(ac+2)x+2c≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某賽季甲、乙兩名籃球運動員每場比賽得分的原始記錄如下:
甲運動員得分:13,51,23,8,26,38,16,33,14,28,39;
乙運動員得分:49,24,12,31,50,31,44,36,15,37,25,36,39.
(Ⅰ)用十位數(shù)作莖,畫出原始數(shù)據(jù)的莖葉圖;
(Ⅱ)用分層抽樣的方法在乙運動員得分十位數(shù)為2、3、4的比賽中抽取一個容量為5的樣本,從該樣本中隨機抽取2場,求其中恰有1場的得分大于40分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,半徑為$\frac{9}{2}$的△ABC的外接圓圓O的直徑為AB,直線CE為圓O的切線且相切于點C,AD⊥CE于點D,AD=1.
(1)求證:△ABC相似于△ACD;
(2)求AC的長.

查看答案和解析>>

同步練習(xí)冊答案