3.當(dāng)a<-2時(shí),關(guān)于x的不等式ax2+(a-2)x-2≥0的解為{x|-1≤x≤$\frac{2}{a}$}.

分析 根據(jù)a<-2時(shí)不等式化為(x-$\frac{2}{a}$)(x+1)≤0,比較$\frac{2}{a}$與1的大小,寫出對應(yīng)不等式的解集即可.

解答 解:不等式ax2+(a-2)x-2≥0可化為(ax-2)(x+1)≥0,
當(dāng)a<-2時(shí),不等式可化為(x-$\frac{2}{a}$)(x+1)≤0,
該不等式對應(yīng)方程的兩根分別為$\frac{2}{a}$和-1,且$\frac{2}{a}$>-1;
則原不等式的解集為{x|$-1≤x≤\frac{2}{a}$}.
故答案為:{x|-1≤x≤$\frac{2}{a}$}.

點(diǎn)評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓心為C的圓:(x-a)2+(y-b)2=8(a,b為正整數(shù))過點(diǎn)A(0,1),且與直線y-3-2$\sqrt{2}$=0相切.
(1)求圓C的方程;
(2)若過點(diǎn)M(4,-1)的直線l與圓C相交于E,F(xiàn)兩點(diǎn),且$\overrightarrow{CE}$•$\overrightarrow{CF}$=0.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足(1+i)z=2+i,則$\overline{z}$=( 。
A.$\frac{3}{2}$-$\frac{1}{2}$iB.$\frac{3}{2}$+$\frac{1}{2}$iC.1+$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,洪澤湖濕地為拓展旅游業(yè)務(wù),現(xiàn)準(zhǔn)備在濕地內(nèi)建造一個(gè)觀景臺P,已知射線AB,AC為濕地兩邊夾角為120°的公路(長度均超過2千米),在兩條公路AB,AC上分別設(shè)立游客接送點(diǎn)M,N,從觀景臺P到M,N建造兩條觀光線路PM,PN,測得AM=2千米,AN=2千米.
(1)求線段MN的長度;
(2)若∠MPN=60°,求兩條觀光線路PM與PN之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若a:b:c=1:2:$\sqrt{6}$,則最大角的余弦值等于(  )
A.$\frac{1}{5}$B.$\frac{5}{9}$C.-$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一個(gè)口袋中裝有3個(gè)白球,4個(gè)黑球,3個(gè)紅球,一次從中摸出3個(gè)球.
(1)求摸出的3個(gè)球顏色不全相同的概率;
(2)規(guī)定摸出1個(gè)白球、1個(gè)黑球、1個(gè)紅球分別得1分、2分、3分,設(shè)X為摸出3個(gè)球的得分之和,求隨機(jī)變量X≥6的概率分布及數(shù)學(xué)期望E(X≥6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.$\sqrt{1+sin6°}$-$\sqrt{2+2cos6°}$化簡的結(jié)果為( 。
A.-sin3°+cos3°B.-sin3°+3cos3°C.sin3°-cos3°D.-sin3°-3cos3°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某賽季甲隊(duì)每場比賽平均失球數(shù)是1.5,失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;乙隊(duì)每場比賽平均失球數(shù)是2.1,失球個(gè)數(shù)的標(biāo)準(zhǔn)差為0.4.下列說法中,錯(cuò)誤的是( 。
A.平均說來甲隊(duì)比乙隊(duì)防守技術(shù)好
B.甲隊(duì)比乙隊(duì)技術(shù)水平更穩(wěn)定
C.甲隊(duì)有時(shí)表現(xiàn)比較差,有時(shí)表現(xiàn)又比較好
D.乙隊(duì)很少不失球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,三棱柱ABC-A1B1C1中,CC1=BC1=$\sqrt{2}$,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC1B1,E、F分別為棱AB、CC1的中點(diǎn).
(1)求證:EF∥平面A1BC1;
(2)若AC2為整數(shù),且EF與平面ACC1A1所成的角的正弦值為$\frac{\sqrt{2}}{3}$,求二面角C-AA1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案