4.已知F1、F2是橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}$=1(a>b>0)的兩個焦點,P為橢圓C上的一點,且$\overline{P{F}_{1}}$⊥$\overline{P{F}_{2}}$.求△PF1F2的面積( 。
A.9B.6C.9$\sqrt{3}$D.6$\sqrt{3}$

分析 由題意畫出圖形,由橢圓方程求出a,c的值,在焦點三角形中,利用橢圓定義及勾股定理求得|PF1||PF2|,代入三角形面積公式得答案.

解答 解:如圖,

由橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}$=1(a>b>0),得a2=16,b2=9,
∴$c=\sqrt{{a}^{2}-^{2}}=\sqrt{7}$.
∵$\overline{P{F}_{1}}$⊥$\overline{P{F}_{2}}$,∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=|{F}_{1}{F}_{2}{|}^{2}=4{c}^{2}=28$,
即$(|P{F}_{1}|+|P{F}_{2}|)^{2}-2|P{F}_{1}P{F}_{2}|=28$,
則$|P{F}_{1}||P{F}_{2}|=\frac{4{a}^{2}-28}{2}=\frac{64-28}{2}=18$.
則${S}_{△P{F}_{1}F2}=\frac{1}{2}|P{F}_{1}||P{F}_{2}|=\frac{1}{2}×18=9$.
故選:A.

點評 本題考查橢圓的簡單性質(zhì),考查了橢圓定義及余弦定理在解焦點三角形中的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.△ABC的外接圓的圓心為O,半徑為1,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$且$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}|$,則向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.畫出下列函數(shù)的圖象:
(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$
(2)G(n)=3n+1,n∈{1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,動圓經(jīng)過點M(a-2,0),N(a+2,0),P(0,-2),其中a∈R.
(1)求動圓圓心的軌跡E的方程;
(2)過點P作直線l交軌跡E于不同的兩點A、B,直線OA與直線OB分別交直線y=2于兩點C、D,記△ACD與△BCD的面積分別為S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定點F,定直線l和動點M,設(shè)M到l的距離為d,則“|MF|=d”是“M的軌跡是以F為焦點,l為準(zhǔn)線的拋物線”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四類函數(shù)中,具有性質(zhì)“對任意的x>0,y>0,函數(shù)f(x)滿足“f(x+y)=f(x)•f(y)”的是( 。
A.冪函數(shù)B.對數(shù)函數(shù)C.指數(shù)函數(shù)D.一次函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)-1(ω>0)的圖象向右平移$\frac{π}{3}$個單位后與原圖象重合,則ω的最小值是(  )
A.6B.3C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ln x-$\frac{1}{x-1}$的零點的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知冪函數(shù)f(x)=x(2-k)(1+k)(k∈Z),且f(x)在(0,+∞)上單調(diào)遞增.
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)f(x)的解析式;
(2)試判斷是否存在正數(shù)q,使函數(shù)g(x)=1-qf(x)+(2q-1)x在區(qū)間[-1,2]上的值域為[-4,$\frac{17}{8}$].若存在,求出q的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案