14.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$的部分圖象如圖所示,則以下關(guān)于f(x)圖象的描述正確的是( 。
A.在(-$\frac{π}{12}$,$\frac{π}{6}$)單調(diào)遞增B.在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)單調(diào)遞減
C.x=-$\frac{5π}{6}$是其一條對(duì)稱軸D.(-$\frac{π}{12}$,0)是其一個(gè)對(duì)稱中心

分析 根據(jù)圖象的兩個(gè)點(diǎn)A、B的橫坐標(biāo),得到四分之三個(gè)周期的值,得到周期的值,做出ω的值,把圖象所過的一個(gè)點(diǎn)的坐標(biāo)代入方程做出初相,求得解析式,利用正弦函數(shù)的圖象和性質(zhì)即可得解.

解答 解:由圖象可得:$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,
∴T=$\frac{2π}{ω}$=π,解得ω=2,
又∵由函數(shù)f(x)的圖象經(jīng)過($\frac{5π}{12}$,2),
∴2=2sin(2×$\frac{5π}{12}$+φ),
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,(k∈Z),即φ=2kπ-$\frac{π}{3}$,(k∈Z),
又由|φ|<$\frac{π}{2}$,則φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$).
∴由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得函數(shù)f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,由(-$\frac{π}{12}$,$\frac{π}{6}$)?[-$\frac{π}{12}$,$\frac{5π}{12}$]可得A正確;
由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,可得函數(shù)f(x)的單調(diào)遞減區(qū)間為:[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z,可得B不正確;
由sin[2×(-$\frac{5π}{6}$)-$\frac{π}{3}$]=0≠±1,故C不正確;
由sin[2×(-$\frac{π}{12}$)-$\frac{π}{3}$]=-1≠0,故D不正確;
故選:A.

點(diǎn)評(píng) 本題考查由部分圖象確定函數(shù)的解析式,考查了正弦函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是確定初相的值,這里利用代入點(diǎn)的坐標(biāo)求出初相,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥-1}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+3y的最大值為( 。
A.0B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an},{bn}滿足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{_{n}}{1-{{a}_{n}}^{2}}$,n∈N*,則an=$\frac{1}{n+1}$,b2016=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合P={x|x2-2x-3≥0},Q={x|1<x<4},則∁R(P∩Q)等于( 。
A.(-1,3)B.(3,4]C.(-∞,3)∪[4,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從集合{1,2,3,5,11}中有放回地任取2次元素分別作為直線Ax+By=0中的A、B,則恰好為坐標(biāo)系角平分線的直線的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C上任意一點(diǎn)P到點(diǎn)F(1,0)的距離比到直線l:x=-2的距離小1.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)若斜率k>2的直線l過點(diǎn)F且交曲線C為A、B兩點(diǎn),當(dāng)線段AB的中點(diǎn)M到直線l′:5x+12y+a=0(a>-5)的距離為$\frac{1}{13}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={y|$\frac{x}{4}$+$\frac{y}{2}$=1},N={x|${\frac{x^2}{16}}\right.$+$\frac{y^2}{4}$=1},則M∩N=( 。
A.B.{(4,0),(0,2)}C.{4,2}D.[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z滿足iz=i+z,則z=( 。
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為1的球面上,球心O在AB上,SO⊥底面ABC,$AC=\sqrt{2}$,則此三棱錐的體積為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案