【題目】已知(x+n展開式的二項式系數(shù)之和為256

(1)求n

(2)若展開式中常數(shù)項為,求m的值;

(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.

【答案】(1)(2)(3)

【解析】試題分析:(1)(x+n展開式的二項式系數(shù)之和為256,可得2n=256,解得n即可得出.

(2)(x+8的通項公式:Tr+1=令8-2r=0,解得r即可得出;

(3)(x+8的通項公式:Tr+1=,由于展開式中系數(shù)最大項只有第6項和第7項,可得m≠0,令系數(shù)相等 解出m的值.

本題考查了二項式定理的應(yīng)用、方程的解法,考查了推理能力與計算能力,屬于中檔題.

試題解析:解:(1)∵(x+n展開式的二項式系數(shù)之和為256,∴2n=256,解得n=8.

(2)的通項公式:Tr+1==mrx8-2r,令8-2r=0,解得r=4.

m4=,解得m=

(3)的通項公式:Tr+1==mrx8-2r

∵展開式中系數(shù)最大項只有第6項和第7項,∴m≠0,

T6=m5x-2,T7=m6x-4,令, 解得m=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①點P(-1,4)到直線3x+4y =2的距離為3.

②過點M(-3,5)且在兩坐標軸上的截距互為相反數(shù)的直線方程為.

③命題“x∈R,使得x2﹣2x+10”的否定是真命題;

④“x ≤1,且y≤1”是“x + y ≤2”的充要條件.

其中不正確命題的序號是 _______________  .(把你認為不正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中錯誤的是( )

A. 在一次試卷分析中,從每個考室中抽取第5號考生的成績進行統(tǒng)計,不是簡單隨機抽樣

B. 對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:

區(qū)間

頻數(shù)

1

1

3

3

18

16

28

30

估計小于29的數(shù)據(jù)大約占總體的

C. 設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為,這說明二者存在著高度相關(guān)

D. 通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如表列聯(lián)表.

,則有以上的把握認為“選擇過馬路方式與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查在級風(fēng)的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船

(1)作出性別與暈船關(guān)系的列聯(lián)表;

(2)根據(jù)此資料,能否在犯錯誤的概率不超過0.1的前提下認為級風(fēng)的海上航行中暈船與性別有關(guān)?

暈船

不暈船

總計

男人

女人

總計

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.求移栽的4株大樹中:

(1)兩種大樹各成活1株的概率;

(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:①;②26-7;③,其中正確的結(jié)論是( 。

A. 僅有① B. 僅有② C. ②與③ D. 僅有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為其導(dǎo)函數(shù).

(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;

(2) 若, 設(shè) 為函數(shù)圖象上不同的兩點,且滿足,設(shè)線段中點的橫坐標為 證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)若的圖象與的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002, ,800進行編號;

(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;

(下面摘取了第7行到第9行)

(2)抽取的100的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>

成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:

人數(shù)

數(shù)學(xué)

優(yōu)秀

良好

及格

地理

優(yōu)秀

7

20

5

良好

9

18

6

及格

a

4

b

(3)在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

同步練習(xí)冊答案