10.已知tanα=-$\frac{4}{3}$,則tan(α-$\frac{π}{4}$)=7.

分析 利用兩角差的正切公式求得要求式子的值.

解答 解:∵tanα=-$\frac{4}{3}$,則tan(α-$\frac{π}{4}$)=$\frac{tanα-1}{1+tanα}$=$\frac{-\frac{4}{3}-1}{1+(-\frac{4}{3})}$=7,
故答案為:7.

點(diǎn)評(píng) 本題主要考查兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(-1,x),$\overrightarrow$=(-2,4).若$\overrightarrow{a}$∥$\overrightarrow$,則x的值為(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=asinx-$\sqrt{3}$cosx(a∈R)的圖象經(jīng)過點(diǎn)($\frac{π}{3}$,0).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,$\frac{3π}{2}$],求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)=$\left\{\begin{array}{l}{lnx,(x>1)}\\{2x+{m}^{3},(x≤1)}\end{array}\right.$,且f(f(e))=10,則m的值為( 。
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.計(jì)算:
(1)(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{\frac{1}{3}}$+$\root{4}{(3-\sqrt{10})^{4}}$;
(2)5${\;}^{lo{g}_{5}2}$+lg22+lg5•lg2+lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2sin(x+$\frac{π}{3}$)•cosx.
(1)若0≤x≤$\frac{π}{2}$,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A為銳角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)$\frac{2+i}{1+i}$的共扼復(fù)數(shù)是( 。
A.-$\frac{3}{2}$+$\frac{1}{2}$iB.-$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{3}{2}$-$\frac{1}{2}$iD.$\frac{3}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\underset{lim}{n→∞}\frac{4{n}^{2}-1}{2{n}^{2}+3n}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義運(yùn)算法則如下:a⊕b=$\root{3}{a}$+b-2,a?b=lga2-lg$\sqrt$;若M=27⊕$\frac{\sqrt{2}}{2}$,N=$\frac{\sqrt{2}}{2}$?25,則M+N=( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案