18.$1{0^{lg\frac{1}{2}}}•{(\frac{1}{10})^{lg5}}$的值是$\frac{1}{10}$.

分析 根據(jù)${a}^{lo{g}_{a}^{N}}$=N和指數(shù)、對數(shù)的運(yùn)算性質(zhì)求出式子的值.

解答 解:∵${a}^{lo{g}_{a}^{N}}$=N(a>0且a≠1),
∴$1{0}^{lg\frac{1}{2}}•{(\frac{1}{10})}^{lg5}$=$1{0}^{lg\frac{1}{2}}•{10}^{-lg5}$=$1{0}^{lg\frac{1}{2}}•{10}^{lg{5}^{-1}}$
=$\frac{1}{2}×\frac{1}{5}$=$\frac{1}{10}$,
故答案為:$\frac{1}{10}$.

點(diǎn)評 本題考查了指數(shù)、對數(shù)的運(yùn)算性質(zhì),以及${a}^{lo{g}_{a}^{N}}$=N的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)直線系A(chǔ):(x-1)cos θ+(y-1)sin θ=1(0≤θ<2π),對于下列五個(gè)命題:
①存在定點(diǎn)P不在A中的任一直線上;
②A中所有直線均經(jīng)過一個(gè)定點(diǎn);
③對于任意的正整數(shù)n(n≥3),存在正n邊形,其所有邊均在A中的直線上;
④A中的直線所能圍成的正三角形的面積都相等;
⑤A中的直線所能圍成的正方形的面積都相等.
其中所有真命題的序號(hào)是( 。
A.①②④B.②③⑤C.①③⑤D.②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tanα=2,則$\frac{{{{sin}^3}α-2{{cos}^3}α}}{{sinα•{{cos}^2}α}}$的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知⊙O1與⊙O2相交于點(diǎn)M,N,NA為⊙O2的直徑,連接AM交⊙O1于點(diǎn)B,點(diǎn)C為$\widehat{AM}$的中點(diǎn),連接CN分別與直線AB,⊙O1交于點(diǎn)D,E.求證:
(1)AC∥BE
(2)CD•BE2=CN•DE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若不等式x2+y2≤2所表示的平面區(qū)域?yàn)镸,不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{y≥2x-6}\end{array}\right.$表示的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域N內(nèi)拋一粒豆子,則豆子落在區(qū)域M內(nèi)的概率為( 。
A.$\frac{π}{8}$B.$\frac{π}{9}$C.$\frac{π}{24}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,則tanθ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.正四面體A-BCD中,AC與BD所成角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算
(1)$\frac{tan10°tan70°}{tan70°-tan10°+tan120°}$    
(2)$\frac{{2cos40°+cos10°(1+\sqrt{3}tan10°)}}{{\sqrt{1+cos10°}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,2sin2$\frac{A+B}{2}$=sinC+1.
(Ⅰ)求角C的大小;
(Ⅱ)若a=$\sqrt{2}$,c=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案