【題目】如圖甲,在直角梯形中,ABCD,ABBCCD=2AB=2BC=4,過A點作AECD,垂足為E,現(xiàn)將ΔADE沿AE折疊,使得DEEC.AD的中點F,連接BF,CF,EF,如圖乙。

(1)求證:BC⊥平面DEC;

(2)求二面角C-BF-E的余弦值.

【答案】(1)證明見解析;(2)

【解析】

1)先證明DE⊥平面ABCE 可得DEBC,結(jié)合BCEC,可證BC⊥平面DEC

(2)以點E為坐標原點,分別以EA,EC,ED為x,y,z軸建立空間坐標系E-xyz,求出平面EFB和平面BCF的一個法向量,接著代入公式,可求得二面角C-BF-E的余弦值.

(1)證明:如圖,∵DEEC,DEAE

DE⊥平面ABCE,

又∵BC平面ABCE

DEBC,

又∵BCECDEEC=E,

BC⊥平面DEC.

(2)如圖,以點E為坐標原點,分別以EA,ECEDx,yz軸建立空間坐標系E-xyz,

E(0,00),C(02,0),B(2,20),D(00,2)A(2,0,0),F(1,0,1)

設(shè)平面EFB的法向量

,

所以有

∴取,得平面EFB的一個法向量

設(shè)平面BCF的法向量為

,

所以有

∴取,得平面BCF的一個法向量

設(shè)二面角C-BF-E的大小為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓兩焦點分別為、,且離心率;

(1)設(shè)E是直線與橢圓的一個交點,求取最小值時橢圓的方程;

(2)已知,是否存在斜率為k的直線l與(1)中的橢圓交于不同的兩點A、B,使得點N在線段AB的垂直平分線上,若存在,求出直線ly軸上截距的范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ω0)的最小正周期為π

(Ⅰ)求ω的值和fx)的單調(diào)遞增區(qū)間;

(Ⅱ)若關(guān)于x的方程fx)﹣m0在區(qū)間[0,]上有兩個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點間的距離為,動點滿足,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓的標準方程:

1)兩個焦點坐標分別是,橢圓上一點到兩焦點的距離之和等于10;

2)過點,且與橢圓有相同的焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.某市場研究人員為了了解共享單車運營公司的經(jīng)營狀況,對該公司最近六個月(20175月到201710月)內(nèi)在西安市的市場占有率進行了統(tǒng)計,并繪制了相應(yīng)的折線圖.

1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程;

2公司對員工承諾如果公司的共享單車在2017年年底(12月底)能達到西安市場占有率的,員工每人都可以獲得年終獎,依據(jù)上面計算得到回歸方程估計員工是否能得到年終獎.

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點.

(Ⅰ)求的取值范圍;

(Ⅱ)設(shè),的兩個極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成本為元,每生產(chǎn)件,需另投入成本為元,每件產(chǎn)品售價為元(該新產(chǎn)品在市場上供不應(yīng)求可全部賣完).

(1)寫出每天利潤關(guān)于每天產(chǎn)量的函數(shù)解析式;

(2)當(dāng)每天產(chǎn)量為多少件時,該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤最大.

查看答案和解析>>

同步練習(xí)冊答案