16.某幾何體的三視圖如圖所示,圖中網(wǎng)格每個小正方形的邊長都為1,則該幾何體的體積等于( 。
A.$\frac{28}{3}$πB.$\frac{20}{3}$πC.D.$\frac{8}{3}$π

分析 由三視圖還原幾何體為椎體組合體,然后求體積.

解答 解:由已知三視圖得到幾何體是:半個圓錐和$\frac{1}{2}$個球組成,圓錐高為2,底面半徑為2,
所以幾何體的條件為$\frac{1}{2}×\frac{1}{3}×π×{2}^{2}×2+\frac{1}{2}×\frac{4}{3}π×{2}^{3}$=$\frac{20π}{3}$;
故選:B

點評 本題考查了幾何體的三視圖;關鍵是正確還原幾何體,利用條件公式求體積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知S是△ABC所在平面外一點,D是SC的中點,若$\overrightarrow{BD}$=x$\overrightarrow{SA}+y\overrightarrow{SB}+z\overrightarrow{SC}$,則x+y+z=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N)
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)當n≥2,n∈N時,不等式an+1+an+2+…+a2n$>\frac{12}{35}$(log3m-log2m+1)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)在復平面內(nèi)復數(shù)z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i對應的四點是否在同一個圓上,并證明你的結論;
(2)實數(shù)m取什么值時,復平面內(nèi)表示復數(shù)z=(m2-8m+15)+(m2-5m-14)i的點位于第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知一組數(shù)據(jù)按從小到大的順序排列為:14,19,x,23,27,其中中位數(shù)是22,則x的值為( 。
A.24B.23C.22D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.從3,5,7,11這四個質(zhì)數(shù)中任取兩個相乘,可以得到多少個不相等的積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)(x∈R)的圖象為C,如下結論中正確的是①②③④⑤(寫出所在正確結論的編號).
①圖象C關于直線x=$\frac{11}{12}$π對稱;
②圖象C關于點($\frac{2π}{3}$,0)對稱;
③函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)內(nèi)是增函數(shù);
④由f(x1)=f(x2)=0可得x1-x2必是$\frac{π}{4}$的整數(shù)倍;
⑤函數(shù)y=f(x)的表達式可以改寫為f(x)=3cos(2x+$\frac{7π}{6}$);
⑥將圖象C向左平移$\frac{π}{3}$個單位長度后得到的函數(shù)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.為了解大學生觀看某電視節(jié)目是否與性別有關,一所大學心理學教師從該校學生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
喜歡看該節(jié)目不喜歡看該節(jié)目合計
女生5
男生10
合計50
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99.5%的把握認為喜歡看該節(jié)目節(jié)目與性別有關?說明你的理由;
(Ⅲ)已知喜歡看該節(jié)目的10位男生中,5位喜歡看新聞,3位喜歡看動畫片,2位喜歡看韓劇,現(xiàn)從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求喜歡看動畫片的男生甲和喜歡看韓劇的男生乙不全被選中的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①當K2≥3.841時有95%的把握認為ξ、η有關聯(lián);
②當K2≥6.635時有99%的把握認為ξ、η有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.拋物線y2=mx的焦點為(-1,0),則m=(  )
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習冊答案