19.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$-1且an>0,n∈N+
(1)求a1,a2,a3
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

分析 (1)由數(shù)列{an}的遞推公式依次求出a1,a2,a3
(2)根據(jù)a1,a2,a3值的結(jié)構(gòu)特點(diǎn)猜想{an}的通項(xiàng)公式,再用數(shù)學(xué)歸納法①驗(yàn)證n=1成立,②假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.

解答 解:(1)∵a1=S1=$\frac{{a}_{1}}{2}$+$\frac{1}{{a}_{1}}$-1,
∴a1=-1±$\sqrt{3}$.
又∵an>0,
∴a1=$\sqrt{3}$-1.
S2=a1+a2=$\frac{{a}_{2}}{2}$+$\frac{1}{{a}_{2}}$-1,
∴a2=$\sqrt{5}$-$\sqrt{3}$.
S3=a1+a2+a3=$\frac{{a}_{3}}{2}$+$\frac{1}{{a}_{3}}$-1,
∴a3=$\sqrt{7}$-$\sqrt{5}$.
(2)由(1)猜想an=$\sqrt{2n+1}$-$\sqrt{2n-1}$,n∈N+.
下面用數(shù)學(xué)歸納法加以證明:
①當(dāng)n=1時(shí),由(1)知a1=$\sqrt{3}$-1成立.
②假設(shè)n=k(k∈N+)時(shí),ak=$\sqrt{2k+1}$-$\sqrt{2k-1}$成立.
當(dāng)n=k+1時(shí),ak+1=Sk+1-Sk=($\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-1)-($\frac{{a}_{k}}{2}$+$\frac{1}{{a}_{k}}$-1)=$\frac{{a}_{k+1}}{2}$+$\frac{1}{{a}_{k+1}}$-$\sqrt{2k+1}$,
∴ak+12+2$\sqrt{2k+1}$ak+1-2=0
∴ak+1=$\sqrt{2(k+1)+1}$-$\sqrt{2(k+1)-1}$,
即當(dāng)n=k+1時(shí)猜想也成立.
綜上可知,猜想對一切n∈N+都成立.

點(diǎn)評 本題是中檔題,考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法證明數(shù)列問題的方法,考查邏輯推理能力,計(jì)算能力.注意在證明n=k+1時(shí)用上假設(shè),化為n=k的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系中,曲線C位于第一、三象限.若曲線C經(jīng)過點(diǎn)A(2,4),且曲線C上的點(diǎn)到y(tǒng)軸的距離與其到x軸的距離的比是常數(shù),則曲線C的方程是( 。
A.2x+y=0B.2x-y=0C.2x+y=0(x≠0)D.2x-y=0(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校開設(shè)A、B、C、D、E五門選修課,要求每位同學(xué)彼此獨(dú)立地從中選修3門課程.某甲同學(xué)必選A課程,不選B課程,另從其余課程中隨機(jī)任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機(jī)任選三門課程.
(1)求甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機(jī)變量X的分布列如表(其中a為常數(shù)):
X01234
P0.10.20.40.2a
則下列計(jì)算結(jié)果錯誤的是( 。
A.a=0.1B.P(x≥2)=0.7C.P(x≥3)=0.4D.P(x<2)=0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線x+y=1與曲線y=$\sqrt{a-{x}^{2}}$(a>0)恰有一個公共點(diǎn),則a的取值范圍是( 。
A.a=$\frac{1}{2}$B.a>1或a=$\frac{1}{2}$C.$\frac{1}{2}$≤a<1D.$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求過點(diǎn)M(3,2)且與圓x2+y2+4x-2y+4=0相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)如果a,b都是正數(shù),且a≠b,求證:$\frac{a}{{\sqrt}}$+$\frac{{\sqrt{a}}}$>$\sqrt{a}$+$\sqrt$
(2)設(shè)x>-1,m∈N*,用數(shù)學(xué)歸納法證明:(1+x)m≥1+mx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù))10111213
通過公路l的頻數(shù)20402020
通過公路2的頻數(shù)10404010
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路l、公路2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到;每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷售商2萬元.如果汽車A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為$\frac{1}{2}$,甲勝丙、乙勝丙的概率都為$\frac{2}{3}$,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(1)求第3局甲當(dāng)裁判的概率;
(2)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案