11.S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$=$\frac{9}{10}$.

分析 根據(jù)裂項(xiàng)求和即可得到答案

解答 解:S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$=1-$\frac{1}{2}$+$\frac{1}{2}$$-\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{9}$-$\frac{1}{10}$=1-$\frac{1}{10}$=$\frac{9}{10}$,
故答案為:$\frac{9}{10}$

點(diǎn)評(píng) 本題考查了裂項(xiàng)求和,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=ln$\frac{2+x}{2-x}$判斷并證明函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知a,b∈R,a≠0,函數(shù)f(x)=-$\sqrt{2}$(sinx+cosx)+b,g(x)=asinx•cosx+$\frac{a}{2}$+$\frac{1}{a}$+2.
(1)若x∈(0,π),f(x)=-$\frac{2\sqrt{5}}{5}$+b,求sinx-cosx的值;
(2)若不等式f(x)≤g(x)對(duì)任意x∈R恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.為了減少能源損耗,某工廠需要給生產(chǎn)車間建造可使用20年的隔熱層.已知建造該隔熱層每厘米厚的建造成本為3萬(wàn)元.該生產(chǎn)車間每年的能源消耗費(fèi)用M(單位:萬(wàn)元)與隔熱層厚度x(單位:厘米)滿足關(guān)系:M(x)=$\frac{k}{x+2}$(0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為7.5萬(wàn)元,設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用只和.
(1)求k的值及f(x)的表達(dá)式;
(2)試問(wèn)當(dāng)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最少?并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)z滿足z(1+i)=2i,則|z|等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)既是奇函數(shù),又在區(qū)間(0,1)上單調(diào)遞減的是(  )
A.y=-$\frac{1}{x}$B.y=x3+xC.y=-x|x|D.y=ln$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某校自主招生面試共有7道題,其中4道理科題,3道文科題,要求不放回地依次任取3道題作答,則某考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為(  )
A.$\frac{1}{7}$B.$\frac{1}{5}$C.$\frac{3}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=-ax2+lnx(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若?x∈(1,+∞),f(x)>-a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(2,4),函數(shù)f(x)=x2,利用隨機(jī)模擬方法計(jì)算陰影部分面積時(shí),利用計(jì)算器產(chǎn)生兩組0~1之間的均勻隨機(jī)數(shù)a1=RAND,b1=RAND,然后進(jìn)行平移與伸縮變換a=a1+1,b=4b1,試驗(yàn)進(jìn)行100次,前98次中落在陰影部分內(nèi)的樣本點(diǎn)數(shù)為40,且最后兩次試驗(yàn)的隨機(jī)數(shù)為a1=0.5,b1=0.3及a1=0.2,b1=0.6,那么本次模擬得出的面積約為1.64.

查看答案和解析>>

同步練習(xí)冊(cè)答案