分析 由AB1∥DC1,得∠BC1D是異面直線AB1與BC1所成的角,由此能求出異面直線AB1與BC1所成的角;由BC1⊥AB,BC⊥AB,知∠CBC1是二面角C1-AB-C的平面角,由此能求出二面角C1-AB-C的大。
解答 解:∵AB1∥DC1,∴∠BC1D是異面直線AB1與BC1所成的角,
∵DC1=DB=BC1,
∴∠BC1D=60°.
∴異面直線AB1與BC1所成的角為60°.
∵BC1⊥AB,BC⊥AB,
∴∠CBC1是二面角C1-AB-C的平面角,
∵BC=CC1,BC⊥CC1,
∴∠CBC1=45°,
∴二面角C1-AB-C的大小為45°.
故答案為:60°,45°.
點(diǎn)評(píng) 本題考查異面直線所成的角的求法,考查二面角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-y+6=0 | B. | 3x+y-6=0 | C. | 3x-y-6=0 | D. | 3x+y+6=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+$\frac{4}{x}$ | B. | y=sinx+$\frac{4}{sinx}$(0<x<π) | ||
C. | y=ex+4e-x | D. | y=$\sqrt{{x}^{2}+3}$+$\frac{2}{\sqrt{{x}^{2}+3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3] | B. | [-1,8] | C. | (0,6] | D. | [2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 8π | D. | 12π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com