13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)不過原點O的直線l與橢圓C交于兩點M,N,且直線OM,MN,ON的斜率依次成等比數(shù)列,問:直線l是否定向的,請說明理由.

分析 (1)由橢圓的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$,列出方程組能求出橢圓C的標準方程.
(2)由題意設直線l的方程為y=kx+m,(km≠0),聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+4kmx+4(m2-1)=0,由此利用根的判別式、韋達定理、等比數(shù)列、橢圓性質,結合已知條件能求出直線l不定向.

解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$,
∴$\left\{\begin{array}{l}{2a=2×2b}\\{2c=2\sqrt{3}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,
∴橢圓C的標準方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)由題意設直線l的方程為y=kx+m,(km≠0),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+4kmx+4(m2-1)=0,
△=16(4k2-m2+1)>0,
設M(x1,y1),N(x2,y2),則${x}_{1}+{x}_{2}=-\frac{4km}{1+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{4({m}^{2}-1)}{1+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=${k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$,
∵直線OM,MN,ON的斜率依次成等比數(shù)列,
∴$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}=\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$=k2,
∴-$\frac{8{k}^{2}{m}^{2}}{1+4{k}^{2}}$+m2=0,
∵m≠0,∴k2=$\frac{1}{4}$,方向向量$\overrightarrow1666616$=(±2,1).
∴直線l不定向.

點評 本題考查橢圓方程的求法,考查直線是否定向的判斷與求法,是中檔題,解題時要認真審題,注意根的判別式、韋達定理、等比數(shù)列、橢圓性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=($\frac{1}{2}$)|x|-sin|x|在區(qū)間[-π,π]上的零點個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ax}{{e}^{x}}-x-\frac{1}{x}$(α∈R)在(0,+∞)上有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若△ABC的內(nèi)角A,B,C所對的邊為a,b,c,已知sin(A-$\frac{π}{6}$)=cosA,且a=3,則b+c的最大值是( 。
A.6B.5C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a6的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若x,y滿足$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$函數(shù)g(x)=f(x)-2x恰有三個不同的零點,則實數(shù)a的取值范圍是[-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知a是實數(shù),函數(shù)f(x)=2a|x|+2x-a,若函數(shù)y=f(x)有且僅有兩個零點,則實數(shù)a的取值范圍是a<-1或a>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知兩條平行直線a、b,a∥平面α,則b與α的位置關系是b?α或b∥α.

查看答案和解析>>

同步練習冊答案