分析 (Ⅰ)由AC⊥DB,平面BED⊥平面ABCD,得AC⊥平面BED,即AC⊥BE.
又 AE2=AB2+BE2,得BE⊥AB,即可得BE⊥平面ABCD.
(Ⅱ)由(Ⅰ)得BE⊥平面ABCD,故以B為原點,建立空間直角坐標(biāo)系,
則E(0,0,2),D(1,$\sqrt{3}$,0),G($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),C(2,0,0),利用向量法求解.
解答 解:(Ⅰ)證明:∵四邊形ABCD為菱形,∴AC⊥DB
又因為平面BED⊥平面ABCD,平面BED∩平面ABCD=DB,AC?平面ABCD.
∴AC⊥平面BED,即AC⊥BE.
又BE=2,AE=2$\sqrt{2}$,AB=2,∴AE2=AB2+BE2,
∴BE⊥AB,且AB∩BD=B,∴BE⊥平面ABCD.
(Ⅱ)取AD中點H,連接BH.
∵四邊形ABCD為邊長為2的菱形,∠ABC=120°,∴BH⊥AD,且BH=$\sqrt{3}$.
由(Ⅰ)得BE⊥平面ABCD,故以B為原點,建立空間直角坐標(biāo)系(如圖)
則E(0,0,2),D(1,$\sqrt{3}$,0),G($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),C(2,0,0)
設(shè)面EDC的法向量為$\overrightarrow{m}=(x,y,z)$
$\overrightarrow{ED}=(1,\sqrt{3},-2)$,$\overrightarrow{EC}=(2,0,-2)$,$\overrightarrow{EG}=(\frac{1}{2},\frac{\sqrt{3}}{2},-2)$
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{ED}=x+\sqrt{3}y-2z=0}\\{\overrightarrow{m}•\overrightarrow{EC}=2x-2z=0}\end{array}\right.$,可取$\overrightarrow{m}=(\sqrt{3},1,\sqrt{3})$
cos$<\overrightarrow{m},\overrightarrow{EG}>$=$\frac{\overrightarrow{m}•\overrightarrow{EG}}{|\overrightarrow{m}||\overrightarrow{EG}|}$=-$\frac{\sqrt{105}}{35}$
直線EG與平面EDC所成角的正弦值為$\frac{\sqrt{105}}{35}$.
點評 本題考查了線面垂直的判定,向量法求線面角,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.3413 | B. | 0.4772 | C. | 0.1359 | D. | 0.8185 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com