精英家教網 > 高中數學 > 題目詳情

【題目】[2019·朝鮮中學]在如圖所示的程序框圖中,有這樣一個執(zhí)行框,其中的函數關系式為,程序框圖中的為函數的定義域.

(1)若輸入,請寫出輸出的所有的值;

(2)若輸出的所有都相等,試求輸入的初始值

【答案】12

【解析】

時,可以求出,滿足條件,執(zhí)行循環(huán)體,依此類推,而,不滿足于條件,終止循環(huán),解出的所有項即可

要使輸出的所有都相等,根據程序框圖可得,解方程求出初始值的值即可

(1)當x0時,x1=f(x0)=f,x2=f(x1)=f

x3=f(x2)=f=-1,終止循環(huán).∴輸出的數為,.

(2)要使輸出的所有xi都相等,則xi=f(xi-1)=xi-1,此時有x1=f(x0)=x0,即=x0,解得x0=1或x0=2,∴當輸入的初始值x0=1或x0=2時,輸出的所有xi都相等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,正方形與直角梯形所在平面互相垂直, , ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2= 相切于點W(O為坐標原點).
(1)證明:OE⊥OF;
(2)設λ= ,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人相約于下午1:00~2:00之間到某車站乘公共汽車外出,他們到達車站的時間是隨機的.設在下午1:00~2:00之間該車站有四班公共汽車開出,開車時間分別是1:15,1:30,1:45,2:00.求他們在下述情況下乘同一班車的概率:

(1)約定見車就乘;

(2)約定最多等一班車.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2+ax+b,a,b∈R.
(1)若2a+b=4,證明:|f(x)|在區(qū)間[0,4]上的最大值M(a)≥12;
(2)存在實數a,使得當x∈[0,b]時,1≤f(x)≤10恒成立,求實數b的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當x∈(0,4]時f(x)= ,關于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個整數解,則實數a的取值范圍是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的右準線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.

(1)求橢圓的方程;

(2)若直線軸交于點,直線軸交于點,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為圓上的動點, 的坐標為, 在線段的中點.

(Ⅰ)求的軌跡的方程.

(Ⅱ)過點的直線交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經過點與點.

(1)求圓的方程;

(2)過點作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求

(2)當切線斜率不存在時,可知切線方程為.

當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設 線段的中點為,∵,

∴線段的垂直平分線為,與聯立得交點

.

∴圓的方程為.

(2)當切線斜率不存在時,切線方程為.

當切線斜率存在時,設切線方程為,即,

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點睛本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.

型】解答
束】
20

【題目】某小型企業(yè)甲產品生產的投入成本(單位:萬元)與產品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關于的線性回歸方程;

2)根據(1)中的回歸方程,判斷該企業(yè)甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關公式 , .

查看答案和解析>>

同步練習冊答案