5.已知數(shù)列{an}是一個(gè)等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,記數(shù)列{log2bn}的前n項(xiàng)和為Tn,求滿足不等式Tn≥2016的n的最小值.

分析 (1)利用已知條件求出首項(xiàng)與公差,求出通項(xiàng)公式即可.
(2)利用已知條件求出bn,利用對(duì)數(shù)運(yùn)算法則求解數(shù)列的和,解不等式,求解n的最小值.

解答 解:(1)設(shè){an}的公差為d,由已知條件有:$\left\{\begin{array}{l}{{a}_{1}+4d=-5}\\{{a}_{1}+d=1}\end{array}\right.$,…(2分)
解得:a1=3,d=-2…(4分)
所以,an=a1+(n-1)d=-2n+5…(6分)
(2)由(1)知:${c_n}=\frac{{5-{a_n}}}{2}=n,{b_n}={2^{c_n}}={2^n}$…(8分)
所以Tn=log2b1+log2b2+…+log2bn=log22+log222+…+log22n
=$1+2+…+n=\frac{n(n+1)}{2}$…(11分)
Tn≥2016,可得:$\frac{n(n+1)}{2}≥2016$,
n2+n-4032≥0,解得n≥63,滿足不等式Tn≥2016的n的最小值為:63.…(13分)

點(diǎn)評(píng) 本題考查等差數(shù)列通項(xiàng)公式以及數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列與不等式相結(jié)合,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.“漸升數(shù)”是指每個(gè)數(shù)字比它左邊的數(shù)字大的正整數(shù)(如1 458),若把四位“漸升數(shù)”按從小到大的順序排列,求第30個(gè)“漸升數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l過(guò)A(1,1)和點(diǎn)B(0,$\frac{1}{3}$)
(1)求直線l的方程
(2)求l關(guān)于直線x+y-2=0對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.點(diǎn)P(1,t),Q(t2,t-1)均在直線x+y-1=0的上方,則t的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=alnx+bx2+3x的極值點(diǎn)為x1=1,x2=2,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=asin(1-x)+lnx+b(a,b∈R).且f(x)在x=1處的切線方程過(guò)坐標(biāo)原點(diǎn).
(I)求a,b的關(guān)系;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明$\sum_{i-1}^{n}sin\frac{1}{(k+1)^{2}}<ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知{an}是等差數(shù)列,公差d不為零.若a2,a3,a7成等比數(shù)列,且2a1+a2=1,則an=$\frac{5}{3}$-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值的和為a.
(1)求a的值;
(2)設(shè)函數(shù)Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,若對(duì)任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知橢圓C經(jīng)過(guò)點(diǎn)(2,$\sqrt{2}$),且中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),直線y=kx(k≠0)與橢圓C交于E、F兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)若點(diǎn)F的坐標(biāo)為(2,$\sqrt{2}$),求以MN為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案