15.如圖,已知橢圓C經(jīng)過點(2,$\sqrt{2}$),且中心在坐標原點,焦點在x軸上,左頂點為A,左焦點為F1(-2,0),直線y=kx(k≠0)與橢圓C交于E、F兩點,直線AE,AF分別與y軸交于點M,N.
(1)求橢圓C的方程;
(2)若點F的坐標為(2,$\sqrt{2}$),求以MN為直徑的圓的方程.

分析 (1)由題意可設(shè)橢圓標準方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),結(jié)合已知及隱含條件列關(guān)于a,b,c的方程組,求解方程組得到a2,b2的值,則橢圓方程可求;
(2)由橢圓方程求得A的坐標,結(jié)合F的坐標得E的坐標,寫出AE、AF所在直線方程,求出M、N的坐標,得到以MN為直徑的圓的方程.

解答 解:(1)由題意可設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
則$\left\{\begin{array}{l}{c=2}\\{{a}^{2}=^{2}+{c}^{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\end{array}\right.$,解得:a2=8,b2=4.
∴橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;
(2)如圖,F(xiàn)(2,$\sqrt{2}$),E(-2,-$\sqrt{2}$),A(-$2\sqrt{2}$,0),
則AE:$\frac{y+\sqrt{2}}{\sqrt{2}}=\frac{x+2}{2-2\sqrt{2}}$,取x=0,得y=-2-$2\sqrt{2}$;
AF:$\frac{y-0}{\sqrt{2}}=\frac{x+2\sqrt{2}}{2+2\sqrt{2}}$,取x=0,得y=$2\sqrt{2}-2$.
∴MN的中點坐標為(0,-1),
∴以MN為直徑的圓的方程為x2+(y+1)2=8.

點評 本題考查橢圓的簡單性質(zhì),考查直線與圓位置關(guān)系的應(yīng)用,考查整體運算思想方法,是中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項公式;
(2)設(shè)${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,記數(shù)列{log2bn}的前n項和為Tn,求滿足不等式Tn≥2016的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}a{x^2}$-bx,設(shè)h(x)=f(x)-g(x).
(1)求函數(shù)F(x)=f(x)-x的極值;
(2)若g(2)=2,若a<0,討論函數(shù)h(x)的單調(diào)性;
(3)若函數(shù)g(x)是關(guān)于x的一次函數(shù),且函數(shù)h(x)有兩個不同的零點x1,x2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象.
(Ⅰ)求φ的值及函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.175,100,65的最大公約數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知公差為正數(shù)的等差數(shù)列{an}滿足a1=1,2a1,a3-3,a4+5成等比數(shù)列.
(1)求{an}的通項公式;
(2)若bn=(-1)nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.以(a,1)為圓心,且與兩條直線2x-y+4=0與2x-y-6=0同時相切的圓的標準方程為(  )
A.(x-1)2+(y-1)2=5B.(x+1)2+(y+1)2=5C.(x-1)2+y2=5D.x2+(y-1)2=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=4lnx+ax2-6x+b(a,b為常數(shù)),且x=2為f(x)的一個極值點,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=xlnx,則( 。
A.f(x)在(0,+∞)上是增函數(shù)B.f(x)在$(0,\frac{1}{e})$上是增函數(shù)
C.當x∈(0,1)時,f(x)有最小值$-\frac{1}{e}$D.f(x)在定義域內(nèi)無極值

查看答案和解析>>

同步練習冊答案