分析 根據(jù)同角的三角函數(shù)基本關(guān)系,分別化簡(jiǎn)等式的左邊與右邊,看左右是否相等即可.
解答 證明:左邊=1+$\frac{2sinαcosα}{1+sinα+cosα}$
=$\frac{1+sinα+cosα+2sinαcosα}{1+sinα+cosα}$
=$\frac{{(sinα+cosα)}^{2}+(sinα+cosα)}{1+sinα+cosα}$
=$\frac{(sinα+cosα)(1+sinα+cosα)}{1+sinα+cosα}$
=sinα+cosα,
右邊=$\frac{si{n}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$
=$\frac{{sin}^{2}α}{sinα-cosα}$-$\frac{(sinα+cosα{)cos}^{2}α}{{sin}^{2}α{-cos}^{2}α}$
=$\frac{{sin}^{2}α(sinα+cosα)}{(sinα-cosα)(sinα+cosα)}$-$\frac{(sinα+cosα{)cos}^{2}α}{{sin}^{2}α{-cos}^{2}α}$
=$\frac{(sinα+cosα){(sin}^{2}α{-cos}^{2}α)}{{sin}^{2}α{-cos}^{2}α}$
=sinα+cosα;
∴左邊=右邊,等式成立.
點(diǎn)評(píng) 本題露出了三角函數(shù)恒等式的證明問(wèn)題,解題時(shí)應(yīng)靈活應(yīng)用同角的三角函數(shù)基本關(guān)系,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |z1|+|z2|>|z1+z2| | B. | |z1|-|z2|>|z1-z2| | C. | |z1|+|z2|≥|z1+z2| | D. | |z1|-|z2|≥|z1-z2| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com