12.對標有不同編號的形狀大小完全一樣的5件正品和3件次品進行檢測,現(xiàn)不放回地依次取出2件,則在第一次取出正品的條件下,第二次也取出正品的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{5}{14}$D.$\frac{4}{7}$

分析 設“第一次摸出正品”為事件A,“第二次摸出正品”為事件B,則事件A和事件B相互獨立,由此利用條件概率計算公式能求出在第一次摸出正品的條件下,第二次也摸到正品的概率.

解答 解:設“第一次摸出正品”為事件A,“第二次摸出正品”為事件B,則事件A和事件B相互獨立,
在第一次摸出正品的條件下,第二次也摸到正品的概率為:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{5}{8}×\frac{4}{7}}{\frac{5}{8}}$=$\frac{4}{7}$
故選:D.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意條件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{1}{2}$,兩個焦點恰好在圓O:x2+y2=1上,若過橢圓C左焦點F的直線l與圓O的另一個交點為G,線段FG的中點為M,直線MO交橢圓C于A,B兩點,且|AB|=$2\sqrt{2}$|FG|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.盒中裝有7個零件,其中5個是沒有使用過的,2個是使用過的.
(Ⅰ)從盒中每次隨機抽取1個零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用過零件的概率;
(Ⅱ)從盒中任意抽取3個零件,使用后放回盒子中,設X為盒子中使用過零件的個數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如果a>0>b且a+b>0,那么以下不等式正確的個數(shù)是( 。
①a2b<b3 ②$\frac{1}{a}>0>\frac{1}$   ③a3<ab2 ④a2>b2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某校為了了解學生的成績是否與玩網游有關系,隨機抽查了110名學生,得到如下2×2列聯(lián)表:
  優(yōu)秀非優(yōu)秀 
 喜歡 10 50
 不喜歡 20 30
參考公式臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
(1)根據(jù)列聯(lián)表的數(shù)據(jù),問:有多大把握認為“成績優(yōu)秀與玩網友有關?”
(2)現(xiàn)采用分層抽樣方法,從不喜歡的樣本中抽取5人,再從5人中隨機抽取2人,求至少有一人成績優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.甲、乙兩人進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿8局時停止.設甲在每局中獲勝的概率為p(p>$\frac{1}{2}$),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為$\frac{5}{8}$.
(Ⅰ)求p的值;
(Ⅱ)設ξ表示比賽停止時比賽的局數(shù),求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知某正方體的外接球的表面積是16π,則這個正方體的棱長是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.給出如圖所示的一組等式,則觀察圖中所展示的規(guī)律,可推出S20的值為( 。
A.4410B.4010C.4020D.4400

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函數(shù)f(x)的定義域、值域;
(2)若函數(shù)f(x)滿足:對于任意x∈(-∞,1],都有f(x)+1≤0.試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案