分析 (Ⅰ)記“從盒中隨機抽取一個零件,抽到的是使用過零件”為事件A.可得P(A)=$\frac{{∁}_{2}^{1}}{{∁}_{7}^{1}}$.利用二項分布列可得:三次抽取中恰有2次抽到使用過零件的概率P=${∁}_{3}^{2}(\frac{2}{7})^{2}(\frac{5}{7})$.
(II)利用二項分布列的計算公式即可得出.
解答 解:(Ⅰ)記“從盒中隨機抽取一個零件,抽到的是使用過零件”為事件A.
則P(A)=$\frac{{∁}_{2}^{1}}{{∁}_{7}^{1}}$=$\frac{2}{7}$.
所以三次抽取中恰有2次抽到使用過零件的概率P=${∁}_{3}^{2}(\frac{2}{7})^{2}(\frac{5}{7})$=$\frac{60}{343}$.
(Ⅱ)從盒中任意抽取三個零件,使用后放回盒子中,設此時盒子中使用過的零件個數(shù)為X,
由已知X=3,4,5.
P(X=3)=$\frac{{∁}_{5}^{1}{∁}_{2}^{2}}{{∁}_{7}^{3}}$=$\frac{1}{7}$,P(X=4)=$\frac{{∁}_{5}^{2}{∁}_{2}^{1}}{{∁}_{7}^{3}}$=$\frac{4}{7}$,P(X=5)=$\frac{{∁}_{5}^{3}}{{∁}_{7}^{3}}$=$\frac{2}{7}$.
隨機變量X的分布列為:
X | 3 | 4 | 5 |
P | $\frac{1}{7}$ | $\frac{4}{7}$ | $\frac{2}{7}$ |
點評 本題考查了二項分布列與超幾何分布列的概率計算公式及其數(shù)學期望,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4.5 | C. | 3.5 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{5}{14}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com