A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
分析 分別從函數(shù)的定義域和對應(yīng)法則分析各命題是否正確.
解答 解:對于①,由于函數(shù)y=$\sqrt{{x}^{2}}$的定義域為R,y=($\sqrt{x}$)2的定義域為[0,+∞),這兩個函數(shù)的定義域不同,故不是同一函數(shù),故①不滿足條件.
對于②,由于函數(shù)f(x-1)的定義域為[1,2],故有0≤x-1≤1.
對于函數(shù)f(3x2),可得0≤3x2≤1,解得x∈[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$];
故函數(shù)f(3x2)的定義域為∈∈[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],故②不正確.
對于③,函數(shù)y=log2(x2+2x-3),令t=x2+2x-3>0,求得x<-3,或x>1,
故函數(shù)的定義域為(-∞,-3)∪(1,+∞),本題即求t在定義域內(nèi)的增區(qū)間,
利用二次函數(shù)的性質(zhì)可得t的遞增區(qū)間為(1,+∞),故③不正確.
答案:A
點評 本題考查了函數(shù)的三要素;要判斷兩個函數(shù)是否為同一個函數(shù),首先定義域和對應(yīng)法則要相同.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{400\sqrt{2}}{3}$ | B. | $\frac{400\sqrt{3}}{3}$ | C. | $\frac{200(3+\sqrt{3})}{3}$ | D. | $\frac{200(3-\sqrt{3})}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {a|a>1} | B. | {a|a≥1} | C. | {a|a≤1} | D. | {a|0≤a≤1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com