15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,若關(guān)于x的方程f2(x)-af(x)=0恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為[1,+∞).

分析 由題意作函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$的圖象,由f2(x)-af(x)=0得f(x)=0或f(x)=a;從而解得.

解答 解:由題意作函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$的圖象如下,
,
∵f2(x)-af(x)=0,
∴f(x)=0或f(x)=a;
∵f(x)=0有且只有一個(gè)解,
∴f(x)=a有且只有兩個(gè)解,
故a∈[1,+∞);
故答案為:[1,+∞).

點(diǎn)評 本題考查了分段函數(shù)的應(yīng)用及方程與函數(shù)的關(guān)系應(yīng)用,同時(shí)考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的是( 。
A.圓錐是由直角三角形繞其一條邊所在直線旋轉(zhuǎn)得到的幾何體
B.圓臺的側(cè)面展開圖是一個(gè)扇環(huán)
C.棱柱的側(cè)棱可以不平行
D.棱臺的各側(cè)棱延長后不一定交于一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列$\frac{2}{3}$、-$\frac{3}{9}$、$\frac{4}{27}$、-$\frac{5}{81}$,…的一個(gè)通項(xiàng)公式是( 。
A.(-1)n$\frac{n+1}{3^n}$B.(-1)n+1$\frac{n+1}{3^n}$C.(-1)n$\frac{n}{3^n}$D.(-1)n+1$\frac{n}{{3}^{n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C的對邊滿足a<b<c,a2-c2=b2-$\frac{8ac}{5}$,a=3,△ABC的面積為6.
(1)求角A的正弦值;
(2)求邊b,c;
(2)設(shè)D為△ABC內(nèi)任一點(diǎn),點(diǎn)D到邊BC、AC的距離分別為x,y,求|2x-y|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若點(diǎn)A(0,1)落在圓C:x2+y2+2x-4y+k=0(C為圓心)的外部,則|AC|=$\sqrt{2}$,實(shí)數(shù)k的取值范圍是(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.事件A的概率計(jì)算錯(cuò)誤的是( 。
A.P(A)=1B.P(A)=2C.P(A)=0D.P(A)=0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一枚硬幣連續(xù)拋5次,如果出現(xiàn)k次正面的概率等于出現(xiàn)k+3次正面的概率,那么k的值是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于x的不等式$\frac{2{x}^{2}-x+k}{{x}^{2}-x+3}$>1對一切實(shí)數(shù)x恒成立,則k的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點(diǎn),F(xiàn)為線段EC(端點(diǎn)除外)上一動點(diǎn).現(xiàn)將△AFD沿AF折起,使平面ADF⊥平面ABC.在平面ABD內(nèi)過點(diǎn)D作DK⊥AB,K為垂足.設(shè)AK=t,則t的取值范圍是( 。
A.(0,$\frac{2}{5}$)B.($\frac{2}{5}$,$\frac{1}{3}$)C.($\frac{2}{5}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

同步練習(xí)冊答案