題型 性別 | 幾何題 | 代數(shù)題 | 總計 |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
分析 (Ⅰ)由表中數(shù)據(jù)得K2=$\frac{50}{9}>5.024$,根據(jù)統(tǒng)計有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān).
(Ⅱ) 從這50名同學(xué)中隨機(jī)選取男生和女生各1人,先求出基本事件總數(shù),再求出他們選做的題不同包含的基本事件個數(shù),由此能求出他們選做的題不同的概率.
(Ⅲ)由題可知在選擇做幾何題的8名女生中任意抽取兩人,抽取方法有56種,X可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列及數(shù)學(xué)期望E(X).
解答 解:(Ⅰ)由表中數(shù)據(jù)得K2的觀測值:
${K^2}=\frac{{50{{({22×12-8×8})}^2}}}{30×20×30×20}=\frac{50}{9}>5.024$
所以根據(jù)統(tǒng)計有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān).…(3分)
(Ⅱ) 記他們選做的題不同的事件為A,
∵從這50名同學(xué)中隨機(jī)選取男生和女生各1人,
∴他們選做的題不同的概率$P(A)=\frac{{C_8^1C_8^1+C_{22}^1C_{12}^1}}{{C_{30}^1C_{20}^1}}=\frac{41}{75}$…(6分)
(Ⅲ)由題可知在選擇做幾何題的8名女生中任意抽取兩人,抽取方法有$C_8^3=56$種,
X可能取值為0,1,2,3,
$P({X=0})=\frac{C_5^3}{56}=\frac{5}{28}$,…(7分)
$P({X=1})=\frac{C_5^2C_3^1}{56}=\frac{15}{28}$,…(8分)
$P({X=2})=\frac{C_5^1C_3^2}{56}=\frac{15}{56}$,
$P({X=3})=\frac{C_3^3}{56}=\frac{1}{56}$…(10分)
X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{5}{56}$ | $\frac{15}{28}$ | $\frac{15}{56}$ | $\frac{1}{56}$ |
點(diǎn)評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
階梯級別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) | (0,10] | (10,15] | (15,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com