16.已知函數(shù)f(x)=cos(2x+$\frac{π}{6}$)-sin2x.
(1)利用“五點(diǎn)法”列表,并畫(huà)出f(x)在[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象;
(2)a,b,c分別是銳角△ABC中角A,B,C的對(duì)邊.若a=$\sqrt{3}$,f(A)=-$\sqrt{3}$,求△ABC的周長(zhǎng)的取值范圍.

分析 (1)化簡(jiǎn)已知可得f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$),由五點(diǎn)作圖法,即可作出相應(yīng)的圖象;
(2)由已知可求A,利用正弦定理可得b=2sinB,c=2sinC,從而利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)三角形周長(zhǎng)可得:L=$\sqrt{3}$+2$\sqrt{3}$sin(C+$\frac{π}{6}$),根據(jù)C的范圍即可求得周長(zhǎng)的取值范圍.

解答 (本小題滿(mǎn)分12分)
解:(1)將函數(shù)f(x)=cos(2x+$\frac{π}{6}$)-sin2x化簡(jiǎn)成為f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$),根據(jù)列表

2x+$\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
y$\sqrt{3}$0$-\sqrt{3}$0$\sqrt{3}$
描點(diǎn),連線(xiàn),函數(shù)圖象如圖所示:
…(6分)
(2)∵在銳角△ABC中,$a=\sqrt{3},f(A)=-\sqrt{3}$=$\sqrt{3}$cos(2A+$\frac{π}{3}$),
∴可得:2A+$\frac{π}{3}$=2kπ+π,k∈Z,解得:A=kπ+$\frac{π}{3}$,k∈Z,
∴由A為銳角,可知$A=\frac{π}{3}$,
∵由正弦定理可知$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2$,
∴b=2sinB,c=2sinC,
∴可得:周長(zhǎng)$L=\sqrt{3}+2sinB+2sinC=\sqrt{3}+2sin(\frac{2π}{3}-C)+2sinC=\sqrt{3}+2\sqrt{3}sin(C+\frac{π}{6})$,
∵$\frac{π}{6}<C<\frac{π}{2}$,可得:C+$\frac{π}{6}$∈($\frac{π}{3}$,$\frac{2π}{3}$),sin(C+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,1],
∴L的取值范圍是$(3+\sqrt{3},3\sqrt{3}]$.…(12分)

點(diǎn)評(píng) 本題主要考查了五點(diǎn)作圖法,考查了三角函數(shù)恒等變換的應(yīng)用,正弦定理,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a,b∈R+,m,n∈N*
(Ⅰ)求證:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求證:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也可稱(chēng)為可入肺顆粒物,我國(guó)規(guī)定PM2.5的數(shù)值在0~50ug/m2為空氣質(zhì)量一等,甲、乙兩城市現(xiàn)參加全國(guó)“空氣質(zhì)量?jī)?yōu)秀城市”評(píng)選,下表是2011至2015年甲乙兩市空氣質(zhì)量一等天數(shù)的記錄(單位:天):
2011年2012年2013年2014年2015年
8677927278
7882888295
(Ⅰ)畫(huà)出莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選出一個(gè)城市為“空氣質(zhì)量?jī)?yōu)秀城市”,你認(rèn)為選誰(shuí)更好?說(shuō)明理由(不用計(jì)算);
(Ⅲ)若從甲、乙兩市的2013至2015年這三年記錄中各隨機(jī)抽取一年的數(shù)據(jù),求空氣質(zhì)量一等天數(shù)甲市比乙市多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C1:$\frac{x^2}{6}$+$\frac{y^2}{b^2}$=1(b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)F2也為拋物線(xiàn)C2:y2=8x的焦點(diǎn),過(guò)點(diǎn)F2的直線(xiàn)l交拋物線(xiàn)C2于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)P(8,0)滿(mǎn)足|PA|=|PB|,求直線(xiàn)l的方程;
(Ⅱ)T為直線(xiàn)x=-3上任意一點(diǎn),過(guò)點(diǎn)F1作TF1的垂線(xiàn)交橢圓C1于M,N兩點(diǎn),求$\frac{{|{T{F_1}}|}}{{|{MN}|}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.存在正數(shù)m,使得方程$\sqrt{3}$sinx-cosx=m的正根從小到大排成一個(gè)等差數(shù)列.若點(diǎn)A(1,m)在直線(xiàn)ax+by-2=0(a>0,b>0)上,則$\frac{1}{a}$+$\frac{2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某數(shù)學(xué)興趣小組為了煙瘴視覺(jué)和空間能力與性別是否有關(guān),從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30人,女20人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表所示:(單位:人)
題型
性別
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)從這50名同學(xué)中隨機(jī)選取男生和女生各1人,求他們選做的題不同的概率;
(3)已知選擇做幾何題的8名女生有3人解答正確,從這8人中任意抽取3人對(duì)他們的答題情況進(jìn)行研究,被抽取的女生中解答正確的人數(shù)記為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:
P(k2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.甲、乙兩盒中各有除顏色外完全相同的2個(gè)紅球和1個(gè)白球,現(xiàn)從兩盒中隨機(jī)各取一個(gè)球,則至少有一個(gè)紅球的概率為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知a,b,c∈R+,用綜合法證明:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;
(2)2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法正確的是(  )
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的必要不充分條件
B.若p:?x0∈R,x${\;}_{0}^{2}$-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.命題“若x2-1=0,則x=1或x=-1”的否命題是“若x2-1≠0,則x≠1或x≠-1”
D.命題p和命題q有且僅有一個(gè)為真命題的充要條件是(¬p∧q)∨(¬q∧p)為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案