10.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,兩向量的夾角為60°,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$.

分析 根據(jù)向量的數(shù)量積公式計(jì)算即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,兩向量的夾角為60°,
則|$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2-2|$\overrightarrow{a}$•|$\overrightarrow$|•cos60°=4+9-2×2×3×$\frac{1}{2}$=7,
則則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$,
故答案為:$\sqrt{7}$

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式和向量的模,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=x(2015+lnx),若f′(x0)=2016,則x0=(  )
A.e2B.eC.1D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別是a,b,c,設(shè)向量$\overrightarrow m$=(a+b,sinC),$\overrightarrow n$=($\sqrt{3}$a+c,sinB-sinA),若$\overrightarrow m$∥$\overrightarrow n$,則角B的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若正方體ABCD-A1B1C1D1中心O,以O(shè)為球心的球O與正方體的所有棱均相切,以向量$\overrightarrow{AB}$為正視圖的視圖方向,那么該正視圖為如圖(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.從5名志愿者中選出4名分別從事主持、策劃、演員、配樂(lè)四項(xiàng)不同的工作,其中甲志愿者不能從事配樂(lè)工作,則不同的選排方法共有(  )
A.96種B.180種C.120種D.72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸的正半軸上,且截直線2x-y+1=0所得的弦長(zhǎng)為$2\sqrt{10}$的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公比為q的等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1,$\frac{3}{2}$a2,a2成等差數(shù)列.
(1)求an;
(2)設(shè){bn}是首項(xiàng)為2,公差為-a1的等差數(shù)列,求數(shù)列{|bn|}前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z=(a-1)+i,(a∈R)是純虛數(shù),則復(fù)數(shù)$\frac{2+\sqrt{2}i}{a-i}$的模等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知θ∈(-$\frac{π}{2}$,π),若函數(shù)f(x)=cos(x+$\frac{π}{6}$+θ)為奇函數(shù),則函數(shù)y=sin(2x+θ)的圖象在(0,$\frac{π}{3}$)上的對(duì)稱軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=$\frac{π}{12}$D.x=$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案