16.定義在(-∞,0)∪(0,+∞)的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式f(x)<0的解集是{x|x<-1或0<x<1}.

分析 先根據(jù)其為奇函數(shù),得到在(-∞,0)上的單調(diào)性;再借助于f(-1)=-f(1)=0,即可得到結(jié)論.

解答 解:∵定義在(-∞,0)∪(0,+∞)的奇函數(shù),且在(0,+∞)上是增函數(shù),
∴在(-∞,0)上也是增函數(shù);
又∵f(-1)=-f(1)=0.
∴f(x)<0的解集為:{x|x<-1或0<x<1}.
故答案為:{x|x<-1或0<x<1}.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用.解決本題的關(guān)鍵在于知道奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={(x,y)|y•$\sqrt{x}$=0},B={(x,y|x2+y2=1)},C=A∩B,則C中元素的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)x∈[0,5]時(shí),函數(shù)f(x)=3x2-4x+c的值域?yàn)椋ā 。?table class="qanwser">A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[c,f(5)]D.[f$\frac{2}{3}$),f(5)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a5+a6=18,則S10的值為( 。
A.35B.54C.72D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三角形ABC中,$\overrightarrow{AB}=({{x_1},{y_1}}),\overrightarrow{AC}=({{x_2},{y_2}})$.
(1)若$\overrightarrow{AB}=({3,1}),\overrightarrow{AC}=({-1,3})$.求三角形ABC的面積S;
(2)求三角形ABC的面積S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知國(guó)家某5A級(jí)大型景區(qū)對(duì)擁擠等級(jí)與每日游客數(shù)量n(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)n∈[0,100)時(shí),擁擠等級(jí)為“優(yōu)”;當(dāng)n∈[100,200)時(shí),擁擠等級(jí)為“良”;當(dāng)n∈[200,300)時(shí),擁擠等級(jí)為“擁擠”;當(dāng)n≥300時(shí),擁擠等級(jí)為“嚴(yán)重?fù)頂D”.該景區(qū)對(duì)6月份的游客數(shù)量作出如圖的統(tǒng)計(jì)數(shù)據(jù):
(Ⅰ)下面是根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到的頻率分布表,求出a,b的值,并估計(jì)該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
游客數(shù)量
(單位:百人)
[0,100)[100,200)[200,300)[300,400]
天數(shù)a1041
頻率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(Ⅱ)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級(jí)均為“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)=x2+x-2a,若y=f(x)在區(qū)間(-1,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)坐標(biāo)為($\sqrt{2}$,0),準(zhǔn)線方程為x=$±2\sqrt{2}$的橢圓;
(2)過點(diǎn)($\sqrt{2}$,2),漸近線方程為y=±2x的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)等比數(shù)列{an}滿足a2=4,S2=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案