分析 (1)由圖象求出A、T,利用周期公式求出ω,把點$(\frac{π}{6},2)$代入解析式列出方程,結(jié)合條件求出φ的值;
(2)根據(jù)(1)化簡f(A)=1,根據(jù)A的范圍和特殊角的正弦值求出A,結(jié)合條件和正弦定理求出B,由內(nèi)角和定理求出C,即可求出三角形的面積.
解答 解:(1)由圖象可知A=2,﹍﹍﹍﹍﹍﹍﹍﹍﹍(1分),
$\frac{T}{4}=\frac{5}{12}π-\frac{π}{6}=\frac{π}{4}$,∴$T=π,即ω=\frac{2π}{π}=2$ ﹍﹍﹍﹍﹍﹍﹍﹍﹍(3分)
又∵函數(shù)圖象過$(\frac{π}{6},2)$,
∴$2×\frac{π}{6}+φ=\frac{π}{2}+2kπ(k∈Z),且|φ|<\frac{π}{2}∴k=0,φ=\frac{π}{6}$,
∴$f(x)=2sin({2x+\frac{π}{6}})$﹍﹍﹍﹍﹍﹍﹍﹍﹍(6分)
(2)∵$f(A)=2sin({2A+\frac{π}{6}})=1$,∴$sin({2A+\frac{π}{6}})=\frac{1}{2}$,
∵0<A<π,∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{13π}{6},即2A+\frac{π}{6}=\frac{5π}{6}$,
∴$A=\frac{π}{3}$﹍﹍﹍﹍﹍﹍﹍﹍﹍(8分)
在△ABC中,由正弦定理$\frac{sinB}=\frac{a}{sinA},即\frac{1}{sinB}=\frac{{\sqrt{3}}}{{sin\frac{π}{3}}}$,
解得$sinB=\frac{1}{2},又∵b<a,B=\frac{π}{6}$,
∴$C=π-A-B=\frac{π}{2}$﹍﹍﹍﹍﹍﹍﹍﹍﹍(11分)
∴${S_{△ABC}}=\frac{1}{2}×1×\sqrt{3}=\frac{{\sqrt{3}}}{2}$ ﹍﹍﹍﹍﹍﹍﹍﹍﹍(12分)
點評 本題考查由y=Asin(ωx+φ)的部分圖象利用待定系數(shù)法求其解析式,以及正弦定理的應用,注意內(nèi)角的范圍和邊角關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0<x≤a} | B. | {x|x>0或x<-$\frac{4}{5}$a} | ||
C. | {x|-$\frac{a}{2}$<x<a} | D. | {x|-a≤x<-$\frac{4}{5}$a或0<x≤a} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{9}{20}$ | C. | $\frac{4}{5}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com