14.運(yùn)行如圖所示的框圖,可知輸出的結(jié)果s為( 。
A.3B.7C.6D.9

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過程,即可得出結(jié)論.

解答 解:模擬程序框圖的運(yùn)行過程,如下;
S=1,i=1,i<10,S=1+2=3;
i=1+3=4,i<10,S=3+2=5;
i=4+3=7,i<10,S=5+2=7;
i=7+3=10,i≥10,
輸出S=7,結(jié)束程序.
故選:B.

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+$\frac{1}{x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A,B,C的對邊分別是a,b,c,若acosB+bcosA=2ccosC,則∠C為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖甲,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點(diǎn),$AD=2\sqrt{2},AB=3$,將矩形ABCD沿EF折起,如圖乙,使平面CDEF⊥平面ABFE,點(diǎn)M是AD的中點(diǎn),點(diǎn)N在AB上運(yùn)動.
(1)證明:EM⊥CN;
(2)若三棱錐C-BFN的頂點(diǎn)都在體積為$\frac{{8\sqrt{2}π}}{3}$的球面上,求三棱錐C-BFN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)在(0,+∞)上可導(dǎo),且滿足f(x)>-xf′(x),則一定有(  )
A.函數(shù)F(x)=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù)B.函數(shù)F (x)=$\frac{f(x)}{x}$在(0,+∞)上為減函數(shù)
C.函數(shù)G(x)=xf(x)在(0,+∞)上為增函數(shù)D.函數(shù)G(x)=xf(x)在(0,+∞)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(-4,7),向量$\overrightarrow$=(5,2),則$\overrightarrow{a}$•$\overrightarrow$的值是( 。
A.34B.27C.-43D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“所有4的倍數(shù)都是2的倍數(shù),某數(shù)是4的倍數(shù),故該數(shù)是2的倍數(shù)”上述推理(  )
A.小前提錯誤B.結(jié)論錯誤C.大前提錯誤D.正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=aex(a為正實數(shù))
(I)求f(x)在區(qū)間[0,+∞)上的最小值;
(Ⅱ)當(dāng)a=1時,求證:f(x)≥x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.2015年高中生技能大賽中三所學(xué)校分別有3名、2名、1名學(xué)生獲獎,這6名學(xué)生要排成一排合影,則同校學(xué)生排在一起的概率是$\frac{1}{10}$.

查看答案和解析>>

同步練習(xí)冊答案