分析 由等差數(shù)列的性質(zhì)可得:$\frac{{a}_{9}}{_{5}+_{7}}$+$\frac{{a}_{3}}{_{8}+_{4}}$=$\frac{{a}_{9}}{2_{6}}$+$\frac{{a}_{3}}{2_{6}}$=$\frac{{a}_{6}}{_{6}}$.又$\frac{{a}_{6}}{_{6}}$=$\frac{\frac{11({a}_{1}+{a}_{11})}{2}}{\frac{11(_{1}+_{11})}{2}}$=$\frac{{S}_{11}}{{T}_{11}}$,即可得出.
解答 解:由等差數(shù)列的性質(zhì)可得:$\frac{{a}_{9}}{_{5}+_{7}}$+$\frac{{a}_{3}}{_{8}+_{4}}$=$\frac{{a}_{9}}{2_{6}}$+$\frac{{a}_{3}}{2_{6}}$=$\frac{{a}_{6}}{_{6}}$.
∵對于任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,
∴$\frac{{a}_{6}}{_{6}}$=$\frac{\frac{11({a}_{1}+{a}_{11})}{2}}{\frac{11(_{1}+_{11})}{2}}$=$\frac{{S}_{11}}{{T}_{11}}$=$\frac{2×11-3}{4×11-3}$=$\frac{19}{41}$.
故答案為:$\frac{19}{41}$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z>10? | B. | z≤10? | C. | z>20? | D. | z≤20? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | [0,2) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,1} | B. | {-1,1,2} | C. | {-1,1} | D. | {-2,-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com