分析 利用折成直二面角推出AB⊥BC,CD⊥AD.取AC的中點O,說明外接球的球心是O,求出外接球的半徑,然后求解表面積.
解答 解:如圖,因為平面BDC⊥平面ABD(折成直二面角),
所以AB⊥平面BDC,CD⊥平面ABD,得AB⊥BC,CD⊥AD.
取AC的中點O,則OA=OB=OC=OD.
于是外接球的球心是O,$OA=\frac{1}{2}AC$,$O{A^2}=\frac{1}{4}A{C^2}$.
而$A{C^2}=A{B^2}+B{C^2}=2A{B^2}+B{D^2}=\frac{1}{2}(4A{B^2}+2B{D^2})=\frac{1}{2}$.
所以半徑$OA=\frac{1}{2}AC=\frac{{\sqrt{2}}}{4}$.于是外接球的表面積為S=4π•OA2=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點評 本題考查幾何體的外接球的表面積的求法,判斷外接球的球心是解題的關(guān)鍵,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | [0,4) | C. | [0,4] | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n(n+1)}{2}$+1-2n | B. | $\frac{n(n+1)}{2}$+1-2-n | C. | $\frac{n(n-1)}{2}$+1-2-n | D. | $\frac{n(n-1)}{2}$+1-2n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1,2} | B. | [-2,2] | C. | [0,1] | D. | {0,1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com