7.如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當PD=2AB,且E為PB的中點,求二面角B-AE-C的余弦值.

分析 (1)由PD⊥底面ABCD,可得PD⊥AC,利用正方形的性質可得:AC⊥BD,再利用線面面面垂直的判定與性質定理即可證明.
(2)分別以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標系,利用法向量的夾角公式即可得出.

解答 (1)證明:∵PD⊥底面ABCD,AC?平面ABCD,
∴PD⊥AC,
底面ABCD是正方形,∴AC⊥BD,
又PD∩BD=D,∴AC⊥平面ABCD,
又AC?平面AEC,
∴平面AEC⊥平面PDB.
(2)解:分別以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標系,
不妨設AB=2,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,4),E(1,1,2),
$\overrightarrow{AB}$=(0,2,0),$\overrightarrow{AE}$=(-1,1,2),
取平面ABC的一個法向量為$\overrightarrow{n_1}=(0,0,1)$,
設平面ABE的法向量$\overrightarrow{n_2}=(x,y,z)$,則$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{AB}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AE}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{2y=0}\\{-x+y+2z=0}\end{array}\right.$,取$\overrightarrow{{n}_{2}}$=(2,0,1).
∴$cos<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∴二面角B-AE-C的余弦值為$\frac{\sqrt{3}}{3}$.

點評 本題考查了空間位置關系、線面面面垂直的判定與性質定理、空間角、向量夾角公式、法向量的應用、正方形的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.滿足cosαcosβ=$\frac{\sqrt{3}}{2}$-sinαsinβ的一組α,β的值是(  )
A.α=$\frac{13}{12}$π,β=$\frac{3π}{4}$B.α=$\frac{π}{2}$,β=$\frac{π}{6}$C.α=$\frac{π}{2}$,β=$\frac{π}{3}$D.α=$\frac{π}{3}$,β=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列三個命題中真命題的個數(shù)是( 。
(1)命題“?x∈R,sinx≤1”的否定是“?x∈R,sinx>1”
(2)“若am2<bm2,則a<b”的逆命題為真命題
(3)命題p:?x∈[1,+∞),lgx≥0,命題q:?x∈R,x2+x+1<0,則p∨q為真命題.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.5名學生相約第二天去春游,本著自愿的原則,規(guī)定任何人可以“去”或“不去”,則第二天可能出現(xiàn)的不同情況的種數(shù)為(  )
A.10B.20C.32D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知二次函數(shù)f(x)=x2+ax+b2,若a,b在區(qū)間[0,2]內(nèi)等可能取值,求f(x)=0有實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知實數(shù)a>0,b>0,且a2+3b2=3,若$\sqrt{5}$a+b≤m恒成立.
(1)求m的最小值;
(2)若2|x-1|+|x|≥$\sqrt{5}$a+b對a>0,b>0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{0,x=0時}\\{|x+\frac{2}{x}|,x≠0時}\end{array}\right.$,則有關x的方程f2(x)+bf(x)+c=0有5個不等實根的充分條件是(  )
A.b<-2$\sqrt{2}$且c>0B.b<-2$\sqrt{2}$且c<0C.b<-2$\sqrt{2}$且c=0D.b≥-2$\sqrt{2}$且c=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.f(x)=x(2016+lnx),若f′(x0)=2017,則x0=( 。
A.e2B.1C.ln2D.e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知 f(x)=$\frac{x}{2x+1}$(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,則 fs(x)在[$\frac{1}{2}$,1]上的最小值是$\frac{1}{12}$.

查看答案和解析>>

同步練習冊答案