分析 (1)利用余弦定理、三角形面積計(jì)算公式可得C,再利用同角三角函數(shù)基本關(guān)系式、三角形內(nèi)角和定理、和差公式即可得出.
(2)利用正弦定理、三角形面積計(jì)算公式即可得出.
解答 解:(1)由余弦定理有c2=a2+b2-2abcosC,∴a2+b2-c2=2abcosC,
則$S=\frac{{{a^2}+{b^2}-{c^2}}}{4}=\frac{abcosC}{2}$,又$S=\frac{1}{2}absinC$,
∴cosC=sinC,tanC=1,在△ABC中$C=\frac{π}{4}$,
∵$sinA=\frac{3}{5}<\frac{{\sqrt{2}}}{2}$,在△ABC中$0<A<\frac{π}{4}$或$\frac{3π}{4}<A<π$,但A+B+C=π,
∴$0<A<\frac{π}{4}$,
∴$cosA=\sqrt{1-{{sin}^2}A}=\sqrt{1-{{({\frac{3}{5}})}^2}}=\frac{4}{5}$,
sinB=$sin(A+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$×$(\frac{3}{5}+\frac{4}{5})$=$\frac{7\sqrt{2}}{10}$.
(2)由正弦定理有$\frac{c}{sinC}=\frac{sinB}$,又c=5,∴$\frac{5}{{sin\frac{π}{4}}}=\frac{{\frac{{7\sqrt{2}}}{10}}}$,得b=7,
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×7×5×\frac{3}{5}$=$\frac{21}{2}$.
點(diǎn)評 本題考查了正弦定理余弦定理、三角形面積計(jì)算公式、同角三角函數(shù)基本關(guān)系式、三角形內(nèi)角和定理、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sin α)>f(cos β) | B. | f(cos α)<f(cos β) | C. | f(cos α)>f(sin β) | D. | f(sin α)<f(sin β) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<2015? | B. | k<2016? | C. | k<2017? | D. | k<2018? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com