17.設(shè)U=R,A={x|x<1},B={x|x>m}.
(1)若∁UA⊆B,求實(shí)數(shù)m的取值范圍;
(2)若∁UA?B,求實(shí)數(shù)m的取值范圍.

分析 (1)由全集U=R,求出A的補(bǔ)集,根據(jù)A補(bǔ)集為B的子集,確定出m的范圍即可;
(2)根據(jù)B為A的補(bǔ)集的子集,確定出m的范圍即可.

解答 解:∵U=R,A={x|x<1},B={x|x>m},
∴∁UA={x|x≥1},
(1)∵∁UA⊆B,
∴m<1,
則實(shí)數(shù)m的范圍是{m|m<1};
(2)∵∁UA?B,
∴m≥1,
則實(shí)數(shù)m的范圍是{m|m≥1}.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,以及集合的包含關(guān)系判斷及應(yīng)用,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值為(  )
A.8B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知定義在(-∞,+∞) 上的函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x.x≥0}\\{f(x+2),x<0}\end{array}\right.$,則方程f(x)+1=log4|x|的實(shí)數(shù)解的個(gè)數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,△ABC的面積S=$\frac{{{a^2}+{b^2}-{c^2}}}{4}$且sinA=$\frac{3}{5}$.
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)命題p:x2-5x+6≤0;命題q:(x-m)(x-m-2)≤0,若¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若f(x)=log${\;}_{\frac{1}{3-a}+1}$x在(1,+∞)是增函數(shù),那么實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)4個(gè)正數(shù)的和a1+a2+a3+a4=1,求證:$\frac{{a}_{1}^{2}}{{a}_{1}+{a}_{2}}$+$\frac{{a}_{2}^{2}}{{a}_{2}+{a}_{3}}$+$\frac{{a}_{3}^{2}}{{a}_{3}+{a}_{4}}$+$\frac{{a}_{4}^{2}}{{a}_{4}+{a}_{1}}$≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖1是一個(gè)正三棱柱被平面A1B1C1截得的幾何體,其中AB=2,AA1=3,BB1=2,CC1=1,幾何體的俯視圖如圖2,則該幾何體的正視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若數(shù)列{an}滿足$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$+$\frac{{{a_{n+1}}}}{a_n}$=k(k為常數(shù)),則稱數(shù)列{an}為等比和數(shù)列,k稱為公比和.已知數(shù)列{an}是以3為公比和的等比和數(shù)列,其中a1=1,a2=2,則a2015=21007

查看答案和解析>>

同步練習(xí)冊(cè)答案