函數(shù)f(x)=2sinwx(0<ω<1)在區(qū)間[0,
π
3
]最大值是
2
,則w=( 。
A、
2
3
B、
3
2
C、
4
3
D、
3
4
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:計算題,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:由已知可得
3
π
3
π
2
,可得f(x)=2sinwx(0<w<1)在區(qū)間[0,
π
3
]是增函數(shù),可得sin
3
=
2
2
,從而可求w的值.
解答: 解∵x∈[0,
π
3
],0<ω<1,
∴wx∈[0,
3
],
3
π
3
π
2

∴f(x)=2sinwx(0<w<1)在區(qū)間[0,
π
3
]是增函數(shù)
∵最大值為f(
π
3
)=2sin
3
=
2

∴sin
3
=
2
2

3
=
π
4

∴w=
3
4

故選:D.
點(diǎn)評:本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的圖象與性質(zhì),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為[a,b]上的單調(diào)增函數(shù),求證:方程f(x)=0在[a,b]上至多有一個實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為sn,a1=1且sn=sn-1+an-1+
1
2
,數(shù)列{bn}滿足b1=-30.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn-an}是公比為
1
2
的等比數(shù)列,求{bn}前n項(xiàng)和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式|tx-2|-|tx-t|≤1,其中t是實(shí)參數(shù).
(1)當(dāng)t=1時,解上面的不等式.
(2)若?x∈R,上面的不等式均成立,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x+φ)的圖象向左平移
π
3
單位后為奇函數(shù),則φ的最小正值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(Sn-1)2=anSn
(Ⅰ)求a1;
(Ⅱ)求證:數(shù)列{
1
Sn-1
}為等差數(shù)列;
(Ⅲ)是否存在正整數(shù)m,k,使
1
akSk
=
1
am
+19成立?若存在,求出m,k;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y=
1
8
x2的焦點(diǎn)與雙曲線
y2
a2
-x2=1的一個焦點(diǎn)重合,則該雙曲線的離心率為( 。
A、
2
3
3
B、
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an+1=an2-nan+1,a1=3.
(1)求a2,a3的值;
(2)求證:an≥n+2.

查看答案和解析>>

同步練習(xí)冊答案