分析 由已知利用三角形面積公式可求a,利用同角三角函數(shù)基本關(guān)系式可求cosC的值,利用余弦定理即可解得c的值.
解答 解:∵$b=2,sinC=\frac{1}{2}$,S△ABC=$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×a×2×\frac{1}{2}$,解得a=2$\sqrt{3}$,
∴cosC=$±\frac{\sqrt{3}}{2}$
∴利用余弦定理c2=a2+b2-2abcosC,可得:c=$12+4-2×2×2\sqrt{3}×(±\frac{\sqrt{3}}{2})$,
∴解得:c=2或$2\sqrt{7}$.
故答案為:2或$2\sqrt{7}$.(填寫一個不給分)
點(diǎn)評 本題主要考查了三角形面積公式,同角三角函數(shù)基本關(guān)系式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,熟練掌握相關(guān)公式定理是解題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{35}{2}$ | B. | 35 | C. | $\frac{25}{2}$ | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | -$\frac{7}{2}$ | C. | $\frac{7}{2}$或-$\frac{7}{2}$ | D. | 7或-7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥-2 | B. | a≥2或a≤-2 | C. | -2≤a≤2 | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com