分析 (I)利用奇偶性的定義,看f(-x)和f(x)的關(guān)系,注意到$\frac{1+x}{1-x}$和$\frac{1-x}{1+x}$互為倒數(shù),其對(duì)數(shù)值互為相反數(shù);也可計(jì)算f(-x)+f(x)=0得到結(jié)論.
(Ⅱ)根據(jù)題意得到關(guān)于x0的方程,解方程可得x0的值;
(Ⅲ)將a與b代入函數(shù)f(x)=lg$\frac{1+x}{1-x}$(-<x,1).求出f(a)+f(b)的值,然后計(jì)算出f($\frac{a+b}{1+ab}$)的值,從而證得結(jié)論.
解答 解:(I)f(x)是奇函數(shù),理由如下:
f(x)的定義域?yàn)椋?1,1)關(guān)于原點(diǎn)對(duì)稱;
又∵f(-x)=lg$\frac{1+x}{1-x}$=-lg$\frac{1-x}{1+x}$=-f(x),
所以f(x)為奇函數(shù);
(Ⅱ)∵f(x)=lg$\frac{1+x}{1-x}$(-1<x<1).
∴由f($\frac{1}{2}$)+f($\frac{1}{3}$)=f(x0)得到:lg$\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$+lg$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=lg$\frac{1+{x}_{0}}{1-{x}_{0}}$,
整理,得
lg3×2=lg$\frac{1+{x}_{0}}{1-{x}_{0}}$,
∴$\frac{1+{x}_{0}}{1-{x}_{0}}$=6,
解得x0=$\frac{5}{7}$;
(Ⅲ)證明:∵f(x)=lg$\frac{1+x}{1-x}$(-<x,1).
∴f(a)+f(b)=lg$\frac{1+a}{1-a}$+lg$\frac{1+b}{1-b}$=lg$\frac{1+a}{1-a}$•$\frac{1+b}{1-b}$=lg$\frac{1+a+b+ab}{1-a-b+ab}$,
f($\frac{a+b}{1+ab}$)=lg$\frac{1+\frac{a+b}{1+ab}}{1-\frac{a+b}{1+ab}}$=lg$\frac{1+a+b+ab}{1-a-b+ab}$,
∴對(duì)于f(x)的定義域內(nèi)的任意兩個(gè)實(shí)數(shù)a,b,都有f(a)+f(b)=f($\frac{a+b}{1+ab}$).
得證.
點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì):定義域、奇偶性、單調(diào)性等知識(shí),難度一般.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5:3:4 | B. | 5:4:3 | C. | $\sqrt{5}$:$\sqrt{3}$:2 | D. | $\sqrt{5}$:2:$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com