20.已知U=R,函數(shù)y=ln(1-x)的定義域?yàn)镸,N={x|x2-x<0},則下列結(jié)論正確的是(  )
A.M∩N=MB.M∪(∁UN)=UC.M∩(∁UN)=∅D.M⊆∁UN

分析 根據(jù)題意求出集合M,化簡(jiǎn)集合N,再判斷選項(xiàng)是否正確.

解答 解:全集U=R,函數(shù)y=ln(1-x)的定義域?yàn)镸={x|1-x>0}={x|x<1},
N={x|x2-x<0}={x|0<x<1},
∴M∩N={x|0<x<1}≠M(fèi),A正確;
UN={x|x≤0或x≥1},M∪(∁UN)=R=U,B正確;
M∩(∁UN)={x|x≤0}≠∅,C錯(cuò)誤;
M⊆∁UN不成立,D錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.為了得到函數(shù)y=cos(2x-$\frac{2π}{3}}$)的圖象,可以將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.4C.8D.$8\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x2+ax-a)$\sqrt{x}$.
(1)若a=-4時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.確定 y=$\frac{x}{{x}^{2}+1}$的單調(diào)區(qū)間,并求函數(shù)的極大值、極小值、最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD.
(1)證明:AC⊥PB;
(2)若PD=3,AD=2,求異面直線PB與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=n(n+1)an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1|+|x-a|.
(1)當(dāng)a=2時(shí),解不等式:f(x)≤x+3
(2)當(dāng)x,y∈Z,則稱點(diǎn)P(x,y)為平面上單調(diào)格點(diǎn);若(2x,y)或(x,2y)為格點(diǎn),則稱點(diǎn)P(x,y)為半格點(diǎn).設(shè)Q={(x,y)|$\left\{\begin{array}{l}{0≤x≤2}\\{0≤x≤3}\end{array}\right.$},A={(x,y)|f(x)≤y≤3,a=2}.
①求從區(qū)域Ω中任取一點(diǎn)P,而該點(diǎn)落在區(qū)域A上的概率;
②求從區(qū)域Ω中的所有格點(diǎn)或半格點(diǎn)中任取一點(diǎn)P,而該點(diǎn)是區(qū)域A上的格點(diǎn)或半格點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),則$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案